[开发技巧]·TensorFlow&Keras GPU使用技巧

[开发技巧]·TensorFlow&Keras GPU使用技巧


1.问题描述

在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误。以下简称在训练一个任务的时候需要去测试结果,或者是需要并行训练数据为进行新的运算任务。

首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GPU进行训练(这个不同于MXNet与PyTorch处理方式不同,MXNet与PyTorch需要手动编程去指定数据与运算的Device,这里不讨论这些方法之间的优劣,选择适合自己的就好了),默认充满GPU所有显存。 

所以当用户在运行一个运算任务时会占据所有显存,如果再去开启一个新任务就会内存不足,引起OOM显存容量不足的错误。

 

2.问题分析

通过对上述问题解读,应该可以通过以下的方法解决:

  1. 当一个训练任务默认占据所有GPU显存的时候,可以使用CPU进行新的任务(这显然不是最优方法,使用CPU进行新的任务速度会很慢)
  2. 当一个训练任务默认占据所有GPU显存的时候,用户可以设定此任务占用的GPU显存大小,现在再使用GPU进行新的任务时,就可以并行运行了
  3. 如果有多个GPU可以默认指定任务在不同GPU上。

 

3.使用教程

 

1.解决方法一:使用CPU进行新的任务

这不是最优方法,使用CPU进行新的任务速度会很慢,但是也是一种解决方式

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  

# 打印 TF 可用的 GPU
print(os.environ['CUDA_VISIBLE_DEVICES'])

# -1 表示不使用GPU

2.解决方法二:设定任务占用的GPU显存大小

这个是笔者比较推荐的方式,由于TensorFlow&Keras运行一个运算任务时会占据所有显存,其实有时并没有用到那么多。

这样做也会有点小问题就是,单个任务会变慢一点,笔者测试结果是在使用上述方法并行运行两个单个任务速度变为0.8左右,但是换来了可以运行两个任务,还是很值得的。(推测变慢的原因是两个任务并行运算时,对GPU压力更大,每个任务上分配的性能就会降低,类似于在电脑上跑多个任务,电脑会卡顿)

这样做要注意一点,在分配显存空间后,模型训练占据的内存要设置好(这个是指实际占用内存,可以通过修改batch_size来控制),不要超出你所分配的大小,不然会有不期望的结果出现。

import tensorflow as tf

# 在开启对话session前,先创建一个 tf.ConfigProto() 实例对象

gpuConfig = tf.ConfigProto(allow_soft_placement=True)

# 限制一个进程使用 60% 的显存
gpuConfig.gpu_options.per_process_gpu_memory_fraction = 0.6

# 把你的配置部署到session  变量名 sess 无所谓
sess1 =tf.Session(config=gpuConfig)


#这样,如果你指定的卡的显存是2000M的话,你这个进程只能用1200M。

输出结果(with 1228 MB memory,代表使用1228 MB,这与设置的0.6 * 2000相符)

Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1228 MB memory) -> 
physical GPU (device: 0, name: GeForce MX150, pci bus id: 0000:01:00.0, compute capability: 6.1)

3.解决方法三:多个GPU指定在不同GPU运行

 

如果条件允许,拥有多个,就可以把不同任务放置在不同GPU上,要注意如果是和同事共用,要约定好如何分配,免得大家都用了同一个。

设置方法与方法一类似。-1代表不使用,0代表第一个,1代表第二个

以两个GPU举例,第一个任务开头可以使用如下,第二个任务就把0改为1,多个GPU方法类似。注意一点要放置在开头位置。

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0' 

# 打印 TF 可用的 GPU
print(os.environ['CUDA_VISIBLE_DEVICES'])

# -1 表示不使用GPU 0代表第一个

如果多于两个GPU,想在某个任务设置多个GPU,可以使用下述方法

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' 

# 打印 TF 可用的 GPU
print(os.environ['CUDA_VISIBLE_DEVICES'])

# -1 表示不使用GPU 0代表第一个

最后留个大家一个思考问题,os.environ['CUDA_VISIBLE_DEVICES'] = '-1,0' 时会怎么样调用?

欢迎大家在评论区留言发布自己看法和解读。。

 

4.参考

1.https://www.cnblogs.com/tectal/p/9048184.html

posted @ 2019-05-17 10:44  小宋是呢  阅读(4257)  评论(1编辑  收藏  举报