二分图最大匹配的匈牙利算法:
最大匹配:
完美匹配: 如果所有点都在匹配边上,称这个最大匹配是完美匹配。
最小覆盖:在一个二分图上用最少的点(x 或 y 集合的都行),让每条连接两个点集的边都至少和其中一个点关联。根据konig定理:二分图的最小顶点覆盖数等于最大匹配数。
最小路径覆盖:用尽量少的不相交简单路径(连着n条边)覆盖有向无环图G的所有结点,且任何一个顶点有且只有一条路径与之关联;(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);解决此类问题可以建立一个二分图模型。把所有顶点i拆成两个:X结点集中的i和Y结点集中的i',如果有边i->j,则在二分图中引入边i->j',设二分图最大匹配为m,则结果就是n-m。
最大独立集问题:在N个点的图G中选出m个点,使这m个点两两之间没有边(没有某种关系).求m最大值.如果图G满足二分图条件,则可以用二分图匹配来做.最大独立集点数 = N - 最大匹配数
二分图最大匹配问题的匈牙利算法:
#include<iostream>
using namespace std;
const int Max = 405;
int n, m;
int link[Max];
bool map[Max][Max], vis[Max];
bool dfs(int u){
}
int MaxMatch(){
}
算法思想:
算法的思路是不停的找增广轨,并增加匹配的个数,增广轨顾名思义是指一条可以使匹配数变多的路径,在匹配问题中,增广轨的表现形式是一条"交错轨",也就是说这条由图的边组成的路径,它的第一条边是目前还没有参与匹配的,第二条边参与了匹配,第三条边没有..最后一条边没有参与匹配,并且始点和终点还没有被选择过.这样交错进行,显然他有奇数条边.那么对于这样一条路径,我们可以将第一条边改为已匹配,第二条边改为未匹配...以此类推.也就是将所有的边进行"反色",容易发现这样修改以后,匹配仍然是合法的,但是匹配数增加了一对.另外,单独的一条连接两个未匹配点的边显然也是交错轨.可以证明,当不能再找到增广轨时,就得到了一个最大匹配.这也就是匈牙利算法的思路.