[BZOJ2724][Violet 6]蒲公英

[BZOJ2724][Violet 6]蒲公英

试题描述

输入

修正一下

l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1

输出

输入示例

6 3
1 2 3 2 1 2
1 5
3 6
1 5

输出示例

1
2
1

数据规模及约定

修正下:

n <= 40000, m <= 50000

题解

分块,先预处理出 f[i][j] 表示第 i 块到第 j 块的众数,枚举起点 i 然后扫一遍就好了。

其次是询问,对于一个询问 [ql, qr],其中 ql 属于块 l,qr 属于块 r,众数要么是 f[l+1][r-1],要么是不完整块中的数,所以我们需要搞一个 calc(l, r, x) 功能,表示询问 [l, r] 中 x 出现的次数,有了这个功能后就可以做到把答案初始设为 f[l+1][r-1](O(1)),然后 O(sqrt(n)) 暴力枚举不完整块中的数,如果出现次数比当前的多,就更新答案。

这个 calc() 函数可以这样搞:把所有数离散,每个数的位置记下来,然后当询问 calc(l, r, x) 在 x 的位置序列上二分一下就可以计算了。

 

posted @   xjr01  阅读(303)  评论(0编辑  收藏  举报
编辑推荐:
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
阅读排行:
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
点击右上角即可分享
微信分享提示