Python——collections模块
collections模块
collections模块在内置数据类型(dict、list、set、tuple)的基础上,还提供了几个额外的数据类型:ChainMap、Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple: 生成可以使用名字来访问元素内容的tuple子类
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
namedtuple
namedtuple
是一个函数,它用来创建一个自定义的tuple
对象,并且规定了tuple
元素的个数,并可以用属性而不是索引来引用tuple
的某个元素。
这样一来,我们用namedtuple
可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
>>> from collections import namedtuple >>> Point = namedtuple('Point', ['x', 'y']) >>> >>> p = Point(1,2) >>> p.x 1 >>> p.y 2 >>> Circle = namedtuple('Circle', ['x', 'y', 'r']) >>> c = Circle(1,2,3) >>> c Circle(x=1, y=2, r=3) >>> c.x 1 >>> c.y 2
#namedtuple('名称', [属性list]):
可以验证创建的Point
对象是tuple
的一种子类:
>>> Point = namedtuple('Point',['x1','y1','x2','y2']) >>> p = Point('1','2','3','4') >>> p Point(x1='1', y1='2', x2='3', y2='4') >>> p.x1 '1' >>> isinstance(p,Point) True >>> isinstance(p,tuple) True
deque
使用list
存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list
是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque >>> q = deque(['a', 'b', 'c']) >>> q.appendleft <built-in method appendleft of collections.deque object at 0x028F8228> >>> q.appendleft('1') >>> q deque(['1', 'a', 'b', 'c']) >>> q.append('2') >>> q deque(['1', 'a', 'b', 'c', '2']) >>> q.popleft() '1' >>> q deque(['a', 'b', 'c', '2']) >>> q.pop() '2' >>> q deque(['a', 'b', 'c'])
deque
除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
defaultdict
使用dict
时,如果引用的Key不存在,就会抛出KeyError
。如果希望key不存在时,返回一个默认值,就可以用defaultdict
:
deque(['a', 'b', 'c']) >>> from collections import defaultdict >>> d = defaultdict(lambda:'N/A') >>> d defaultdict(<function <lambda> at 0x02A1F970>, {}) >>> d['key1']=1 >>> d['key1'] 1 >>> d['key2'] 'N/A' >>> from collections import defaultdict >>> d = defaultdict(0) Traceback (most recent call last): File "<pyshell#173>", line 1, in <module> d = defaultdict(0) TypeError: first argument must be callable or None >>> d = defaultdict(str) >>> d defaultdict(<type 'str'>, {}) >>> d['x'] '' >>> d = defaultdict(int) >>> d['x'] 0
注意默认值是调用函数返回的,而函数在创建defaultdict
对象时传入。
除了在Key不存在时返回默认值,defaultdict
的其他行为跟dict
是完全一样的。
OrderedDict
使用dict
时,Key是无序的。在对dict
做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict
:
>>> from collections import OrderedDict >>> d = dict([('a',1),('b',2),('c',3)]) >>> d {'a': 1, 'c': 3, 'b': 2} >>> od = OrderedDict([('a',1),('b',2),('c',3)]) >>> od OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict
的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict() >>> od['z'] = 1 >>> od['y'] = 2 >>> od['x'] = 3 >>> od.keys() # 按照插入的Key的顺序返回 ['z', 'y', 'x']
OrderedDict
可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:
from collections import OrderedDict class LastUpdatedOrderedDict(OrderedDict): def __init__(self, capacity): super(LastUpdatedOrderedDict, self).__init__() self._capacity = capacity def __setitem__(self, key, value): containsKey = 1 if key in self else 0 if len(self) - containsKey >= self._capacity: last = self.popitem(last=False) print 'remove:', last if containsKey: del self[key] print 'set:', (key, value) else: print 'add:', (key, value) OrderedDict.__setitem__(self, key, value)
Counter
Counter
是一个简单的计数器,例如,统计字符出现的个数:
>>> from collections import Counter >>> c = Counter() >>> for ch in 'programming': ... c[ch] = c[ch] + 1 ... >>> c Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
Counter
实际上也是dict
的一个子类,上面的结果可以看出,字符'g'
、'm'
、'r'
各出现了两次,其他字符各出现了一次。
案例:
统计一篇英文文章内每个单词出现频率,并返回出现频率最高的前3个单词及其出现次数
txt_content = '''She had been shopping with her Mom in Wal-Mart. She must have been 6 years old, this beautiful brown haired, freckle-faced image of innocence. It was pouring outside. The kind of rain that gushes over the top of rain gutters, so much in a hurry to hit the Earth, it has no time to flow down the spout. We all stood there under the awning and just inside the door of the Wal-Mart. We all waited, some patiently, others irritated, because nature messed up their hurried day. I am always mesmerized by rainfall. I get lost in the sound and sight of the heavens washing away the dirt and dust of the world. Memories of running, splashing so carefree as a child come pouring in as a welcome reprieve from the worries of my day. '''
使用传统字典
def str_count(s): """ 统计英文单词出现次数 :param s: :return: """ d = dict() s = re.split('\W+', s.strip()) # 去掉回车,逗号等非英文和数字字符 for x in s: if x not in d: d[x] = 1 else: d[x]+=1 return d if __name__ == '__main__': d1 = str_count(txt_content) print(sorted(d1.items(), key = lambda d:d[1],reverse=True)[:3])
使用defaultdict
from collections import defaultdict from collections import Counter import re def str_count(s): """ 统计英文单词出现次数 :param s: :return: """ d = defaultdict(int) s = re.split('\W+', s.strip()) # 去掉回车,逗号等非英文和数字字符 for x in s: d[x] += 1 return d if __name__ == '__main__': d1 = str_count(txt_content) print(sorted(d1.items(), key=lambda d: d[1], reverse=True)[:3])
使用counter
from collections import Counter import re def str_count(s): """ 统计英文单词出现次数 :param s: :return: """ c = Counter() s = re.split('\W+', s.strip()) # 去掉回车,逗号等非英文和数字字符 c.update(s) return c if __name__ == '__main__': c = str_count(txt_content) print(c.most_common(3))