贪心算法(2)-Kruskal最小生成树

什么是最小生成树?

生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起。一个图可以有许多不同的生成树。一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树其实是最小权重生成树的简称。生成树的权重是考虑到了生成树的每条边的权重的总和。

最小生成树有几条边?

最小生成树有(V – 1)条边,其中V是给定的图的顶点数量。

Kruskal算法

下面是步骤寻找MST使用Kruskal算法

1 1,按照所有边的权重排序(从小到大)
2  
3 2,选择最小的边。检查它是否形成与当前生成树形成环。如果没有形成环,讲这条边加入生成树。否则,丢弃它。 
4  
5 3,重复第2步,直到有生成树(V-1)条边

步骤2使用并查集算法来检测环。如果不熟悉并查集建议阅读下并查集

该算法是一种贪心算法。贪心的选择是选择最小的权重的边,并不会和当前的生成树形成环。让我们了解一个例子,考虑下面输入图

spanning-tree-mst

spanning-tree-mst

该图包含9个顶点和14个边。因此,形成最小生成树将有(9 – 1)= 8条边。

01 排序后:
02 Weight   Src    Dest
03 1         7      6
04 2         8      2
05 2         6      5
06 4         0      1
07 4         2      5
08 6         8      6
09 7         2      3
10 7         7      8
11 8         0      7
12 8         1      2
13 9         3      4
14 10        5      4
15 11        1      7
16 14        3      5

现在从已经排序的边中逐个选择
1. edge 7-6:没有环,加入

2. edge 8-2: 没有环,加入

3. edge 6-5: 没有环,加入

4. edge 0-1: 没有环,加入

5. edge 2-5: 没有环,加入

6. edge 8-6: 加入后会形成环,舍弃

7. edge 2-3: 没有环,加入

8. edge 7-8: 加入后会形成环,舍弃

9. edge 0-7: 没有环,加入

10. edge 1-2: 加入后会形成环,舍弃

11. edge 3-4: 没有环,加入

目前为止一家有了 V-1 条边,可以肯定V个顶点都一包含在内,到此结束。

代码实现:

// Kruskal 最小生成树算法
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// 带有权重的边
struct Edge
{
    int src, dest, weight;
};

// 无向图
struct Graph
{
    // V-> 顶点个数, E->边的个数
    int V, E;
    // 由于是无向图,从 src 到 dest的边,同时也是 dest到src的边,按一条边计算
    struct Edge* edge;
};

//构建一个V个顶点 E条边的图
struct Graph* createGraph(int V, int E)
{
    struct Graph* graph = (struct Graph*) malloc( sizeof(struct Graph) );
    graph->V = V;
    graph->E = E;
    graph->edge = (struct Edge*) malloc( graph->E * sizeof( struct Edge ) );
    return graph;
}

//并查集的结构体
struct subset
{
    int parent;
    int rank;
};

// 使用路径压缩查找元素i
int find(struct subset subsets[], int i)
{
    if (subsets[i].parent != i)
        subsets[i].parent = find(subsets, subsets[i].parent);

    return subsets[i].parent;
}

// 按秩合并 x,y
void Union(struct subset subsets[], int x, int y)
{
    int xroot = find(subsets, x);
    int yroot = find(subsets, y);
    if (subsets[xroot].rank < subsets[yroot].rank)
        subsets[xroot].parent = yroot;
    else if (subsets[xroot].rank > subsets[yroot].rank)
        subsets[yroot].parent = xroot;
    else
    {
        subsets[yroot].parent = xroot;
        subsets[xroot].rank++;
    }
}

// 很据权重比较两条边
int myComp(const void* a, const void* b)
{
    struct Edge* a1 = (struct Edge*)a;
    struct Edge* b1 = (struct Edge*)b;
    return a1->weight > b1->weight;
}

// Kruskal 算法
void KruskalMST(struct Graph* graph)
{
    int V = graph->V;
    struct Edge result[V];  //存储结果
    int e = 0;  //result[] 的index
    int i = 0;  // 已排序的边的 index

    //第一步排序
    qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);

    // 为并查集分配内存
    struct subset *subsets =
        (struct subset*) malloc( V * sizeof(struct subset) );

    // 初始化并查集
    for (int v = 0; v < V; ++v)
    {
        subsets[v].parent = v;
        subsets[v].rank = 0;
    }

    // 边的数量到V-1结束
    while (e < V - 1)
    {
        // Step 2: 先选最小权重的边
        struct Edge next_edge = graph->edge[i++];

        int x = find(subsets, next_edge.src);
        int y = find(subsets, next_edge.dest);

        // 如果此边不会引起环
        if (x != y)
        {
            result[e++] = next_edge;
            Union(subsets, x, y);
        }
        // 否则丢弃,继续
    }

    // 打印result[]
    printf("Following are the edges in the constructed MST\n");
    for (i = 0; i < e; ++i)
        printf("%d -- %d == %d\n", result[i].src, result[i].dest,
                                                   result[i].weight);
    return;
}

// 测试
int main()
{
    /* 创建下面的图:
             10
        0--------1
        |  \     |
       6|   5\   |15
        |      \ |
        2--------3
            4       */
    int V = 4;  // 顶点个数
    int E = 5;  //边的个数
    struct Graph* graph = createGraph(V, E);
    // 添加边 0-1
    graph->edge[0].src = 0;
    graph->edge[0].dest = 1;
    graph->edge[0].weight = 10;

    graph->edge[1].src = 0;
    graph->edge[1].dest = 2;
    graph->edge[1].weight = 6;

    graph->edge[2].src = 0;
    graph->edge[2].dest = 3;
    graph->edge[2].weight = 5;

    graph->edge[3].src = 1;
    graph->edge[3].dest = 3;
    graph->edge[3].weight = 15;

    graph->edge[4].src = 2;
    graph->edge[4].dest = 3;
    graph->edge[4].weight = 4;

    KruskalMST(graph);

    return 0;
}

运行结果如下:

Following are the edges in the constructed MST
2 -- 3 == 4
0 -- 3 == 5
0 -- 1 == 10

 时间复杂度:

O(ElogE) 或 O(ElogV)。 排序使用 O(ELogE) 的时间,之后我们遍历中使用并查集O(LogV) ,所以总共复杂度是 O(ELogE + ELogV)。E的值最多为V^2,所以

O(LogV) 和 O(LogE) 可以看做是一样的。

posted @ 2014-07-28 21:27  Jessica程序猿  阅读(543)  评论(0编辑  收藏  举报