HDU 5410 CRB and His Birthday(完全背包变形)

CRB and His Birthday

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 430    Accepted Submission(s): 237


Problem Description
Today is CRB's birthday. His mom decided to buy many presents for her lovely son.
She went to the nearest shop with M Won(currency unit).
At the shop, there are N kinds of presents.
It costs Wi Won to buy one present of i-th kind. (So it costs k × Wi Won to buy k of them.)
But as the counter of the shop is her friend, the counter will give Ai × x + Bi candies if she buys x(x>0) presents of i-th kind.
She wants to receive maximum candies. Your task is to help her.
1 ≤ T ≤ 20
1 ≤ M ≤ 2000
1 ≤ N ≤ 1000
0 ≤ Ai, Bi ≤ 2000
1 ≤ Wi ≤ 2000
 

 

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers M and N.
Then N lines follow, i-th line contains three space separated integers Wi, Ai and Bi.
 

 

Output
For each test case, output the maximum candies she can gain.
 

 

Sample Input
1 100 2 10 2 1 20 1 1
 

 

Sample Output
21
Hint
CRB's mom buys 10 presents of first kind, and receives 2 × 10 + 1 = 21 candies.
 

 

Author
KUT(DPRK)
 

 

Source
 

 

Recommend
wange2014   |   We have carefully selected several similar problems for you:  5416 5415 5414 5413 5412
 
大致三种方法:
1.  01背包+完全背包
先跑一遍01背包,价值为a+b的,然后再按价值为a的完全背包跑。
 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<string>
 4 #include<iostream>
 5 #include<algorithm>
 6 using namespace std;
 7 #define N 2005
 8 #define M 12
 9 
10 int n,m;
11 int f[N],w[N],a[N],b[N];
12 
13 int main()
14 {
15     int T;cin>>T;
16     while(T--)
17     {
18         scanf("%d%d",&m,&n);
19         for(int i=1;i<=n;i++)
20         scanf("%d%d%d",&w[i],&a[i],&b[i]);
21 
22         memset(f,0,sizeof(f));
23 
24         for(int i=1;i<=n;i++)
25         {
26             for(int j=m;j>=w[i];j--)
27             {
28                 f[j]=max(f[j],f[j-w[i]]+a[i]+b[i]);
29             }
30             for(int j=w[i];j<=m;j++)
31             {
32                 f[j]=max(f[j],f[j-w[i]]+a[i]);
33             }
34 
35         }
36         cout<<f[m]<<endl;
37     }
38     return 0;
39 }

 

2. 完全背包的思路。每次有三种选择方案,1不选第i件物品,2选一个第2件物品,3选2个以上的第二件物品。

用一个辅助数组g记录上一行(上一个i)的最大糖果数的值,因为完全背包空间是从小到大的,所以同一个i后面的空间会用到前面的的值,这也就是完全背包的内涵,但是用了辅助数组g,记录上一行的状态,就保证使用a+b不会用到前面的值。

转移方程:f[j]=max3(f[j], f[j-w[i]]+a[i], g[j-w[i]]+a[i]+b[i]);

 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<string>
 4 #include<iostream>
 5 #include<algorithm>
 6 using namespace std;
 7 #define N 2005
 8 #define M 12
 9 
10 int n,m;
11 int w[N],a[N],b[N];
12 int f[N];//f[j]表示j元钱可以得到的最大糖果数
13 int g[N];//g[j]表示上一个i,j元可以得到的最大糖果数
14 
15 int max3(int a,int b,int c)
16 {
17     return max(a,max(b,c));
18 }
19 
20 int main()
21 {
22     int T;cin>>T;
23     while(T--)
24     {
25         scanf("%d%d",&m,&n);
26         for(int i=1;i<=n;i++)
27         scanf("%d%d%d",&w[i],&a[i],&b[i]);
28 
29         memset(f,0,sizeof(f));
30         memset(g,0,sizeof(g));
31 
32         for(int i=1;i<=n;i++)
33         {
34             for(int j=w[i];j<=m;j++)
35             {
36                 f[j]=max3(f[j], f[j-w[i]]+a[i], g[j-w[i]]+a[i]+b[i]);
37             }
38             for(int j=0;j<=m;j++)
39             {
40                 g[j]=f[j];
41             }
42         }
43         cout<<f[m]<<endl;
44     }
45     return 0;
46 }

3. 还是完全背包的思路,用dp[i][j][0]表示不取第i件物品,花费j得到的最大收益,dp[i][j][1]表示取第i件物品,花费j得到的最大收益,最终的结果就是max(dp[i][j][0],dp[i][j][1])。每次对于物品i,先得出不取它能得到的最大收益,然后再求取它能得到的最大收益。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

const int N = 2005;
int dp[N][N][2];

int main ()
{
    int t;cin>>t;
    while ( t-- )
    {
        int m, n;
        scanf("%d%d", &m, &n);
        memset( dp, 0, sizeof(dp) );
        for ( int i = 1; i <= n; i++ )
        {
            int w, a, b;
            scanf("%d%d%d", &w, &a, &b);
            for ( int j = 0; j <= m; j++ )
            {
                dp[i][j][0] = max( dp[i-1][j][0], dp[i-1][j][1] );
            }
            for ( int j = w; j <= m; j++ )
            {
                dp[i][j][1] = max( dp[i][j - w][1] + a, dp[i][j - w][0] + a + b );
            }
        }
        printf("%d\n", max( dp[n][m][0], dp[n][m][1] ));
    }
    return 0;
}

 第一位空间可以压缩,把声明改成 int dp[N][2];最后结果改成max(dp[m][0],dp[m][1]).

中间关键代码换成

    for ( int j = 0; j <= m; j++ )
    {
        dp[i][j][0] = max( dp[i-1][j][0], dp[i-1][j][1] );
    }
    for ( int j = w; j <= m; j++ )
    {
        dp[i][j][1] = max( dp[i][j - w][1] + a, dp[i][j - w][0] + a + b );
    }

 

 

 

posted @ 2015-08-22 10:50  wmxl  阅读(742)  评论(0编辑  收藏  举报