Codeforces 142C. Help Caretaker 题解

原题链接:Codeforces 142C. Help Caretaker
题目大意:给定一个\(n\cdot m\)的矩阵,每次可以摆一个T字(T的形状见原题面),这些T不能交叉重叠,问在一个\(n\cdot m\)的矩阵中最多可以摆多少个T字。
题解:先来口胡一下本题我一共试过三种方法:
(1)打表(连方案一起打下来,反正一共就\(9\times 9\)个,够了。
(2)暴力dfs,一眼就能看出来解法的,再加上一点点剪枝,就没有了。
(3)运用状态压缩,记录下最近三行的状态,用map记录一下,搜索就可以了。
口胡完毕,大佬们可以离开了
好了,我先来讲一下我的两种做法:
(1)暴力dfs,加上一个玄学牺牲了正确性的剪枝,然后很惊奇地发现在\(9\times 8\)\(8\times 9\)的情况下会WA,便用暴力加了一个表。
暴力的思路应该不用讲了,接下来就看一下代码吧。
my code

#include <cstdio>
char mp[15][15];
int n,m;
int ans;
char an[15][15];
const int d[4][5][2]={{{0,0},{0,1},{0,2},{1,1},{2,1}},{{0,2},{1,0},{1,1},{1,2},{2,2}},{{0,1},{1,1},{2,0},{2,1},{2,2}},{{0,0},{1,0},{1,1},{1,2},{2,0}}};//增量表
void dfs(int x,int y,int num,int use){
    if(y==m+1){
        x++;
        y=1;
    }
    if(((n*m-use))/5+num<=ans){
        return;
    }
    if(x>n){
        if(num>ans){
            ans=num;
            for(int i=1;i<=n;i++){
                for(int j=1;j<=m;j++){
                    an[i][j]=mp[i][j];
                }
            }
        }
        return;
    }
    if(mp[x][y]=='.'){
        use++;
    }
    dfs(x,y+1,num,use);
    bool could;
    int nx,ny;
    for(int i=0;i<4;i++){
        could=1;
        for(int j=0;j<5;j++){
            nx=x+d[i][j][0];
            ny=y+d[i][j][1];
            if(nx<1||ny<1||nx>n||ny>m||mp[nx][ny]!='.'){
                could=0;
                break;
            }
        }
        if(!could){
            continue;
        }
        for(int j=0;j<5;j++){
            nx=x+d[i][j][0];
            ny=y+d[i][j][1];
            mp[nx][ny]=(char)(num+'A');
        }
        dfs(x,y+1,num+1,use+5);
        for(int j=0;j<5;j++){
            nx=x+d[i][j][0];
            ny=y+d[i][j][1];
            mp[nx][ny]='.';
        }
    }
}
int main(){
    scanf("%d%d",&n,&m);
    if(n==9&&m==8){
        printf("%d\n",12);
        puts(".AAABCCC");
        puts(".DA.B.C.");
        puts(".DABBBCE");
        puts("DDDFGEEE");
        puts("HFFFGGGE");
        puts("HHHFGIII");
        puts("HJKKKLI.");
        puts(".J.K.LI.");
        puts("JJJKLLL.");
        return 0;
    }
    if(n==8&&m==9){
        printf("%d\n",12);
        puts("...ABBB.C");
        puts("DAAAEBCCC");
        puts("DDDAEBF.C");
        puts("D.GEEEFFF");
        puts("GGGHHHF.I");
        puts("J.GKHLIII");
        puts("JJJKHLLLI");
        puts("J.KKKL...");
        return 0;
    }
    for(int x=1;x<=n;x++){
        for(int y=1;y<=m;y++){
            mp[x][y]='.';
            an[x][y]='.';
        }
    }
    ans=0;
    dfs(1,1,0,0);
    printf("%d\n",ans);
    for(int x=1;x<=n;x++){
        for(int y=1;y<=m;y++){
            putchar(an[x][y]);
        }
        puts("");
    }
    return 0;
}

(2)感觉有点悬那,正式考试时貌似很慌啊,还是老老实实打状压吧。
思路:记忆化搜索,怎么记忆化呢?我们令\(f[x][y][mask]\)为当前在第\(x\) 行,第\(y\)列,前三行状态为\(mask\)时,后面最多能摆多少个T。
话说,暴力的代码是正好写,但这个嘛……位运算的基础一定要好。
my code

#include <cstdio>
#include <map>
#include <algorithm>
using namespace std;
#define par pair<pair<int,int>,int>
#define make_par(a,b,c) make_pair(make_pair(a,b),c)
const int d[4][5][2]={{{-2,-2},{-2,-1},{-2,0},{-1,-1},{0,-1}},{{-2,0},{-1,-2},{-1,-1},{-1,0},{0,0}},{{-2,-1},{-1,-1},{0,-2},{0,-1},{0,0}},{{-2,-2},{-1,-2},{-1,-1},{-1,0},{0,-2}}};//同上
map<par,int> mp;
int n,m;
int find(int x,int y,int nx,int ny){
    return 1<<((x-nx)*m+y-ny);
}
int mx(int a,int b){
    return a>b?a:b;
}
int dfs(int x,int y,int mask){
    if(mask&(1<<28)){
        mask^=(1<<28);
    }
    if(mask&(1<<29)){
        mask^=(1<<29);
    }
    if(mask&(1<<30)){
        mask^=(1<<30);
    }
    par now=make_par(x,y,mask);
    if(mp.count(now)>0){
        return mp[now];
    }
    int &ans=mp[now]=0;
    if(y>m){
        y=1;
        x++;
    }
    if(x>n){
        return ans=0;
    }
    ans=dfs(x,y+1,mask<<1);
    int nx,ny;
    int nmask;
    int _now;
    bool could;
    if(y<=2){
        return ans;
    }
    for(int i=0;i<4;i++){
        nmask=mask;
        nmask<<=1;
        could=1;
        for(int j=0;j<5;j++){
            nx=x+d[i][j][0];
            ny=y+d[i][j][1];
            if(nx<1||ny<1||nx>n||ny>m){
                could=0;
                break;
            }
            _now=find(x,y,nx,ny);
            if(mask&(_now>>1)){
                could=0;
                break;
            }
            nmask|=_now;
        }
        if(could){
            ans=mx(ans,dfs(x,y+1,nmask)+1);
        }
    }
    return ans;
}
char s[15][15];
bool found(int x,int y,int mask,int res){
    if(y>m){
        y=1;
        x++;
    }
    if(res==0){
        return 1;
    }
    if(x>n){
        return res==0;
    }
    if(dfs(x,y+1,mask<<1)>=res&&found(x,y+1,mask<<1,res)){
        return 1;
    }
    int nx,ny;
    int nmask;
    int _now;
    bool could;
    for(int i=0;i<4;i++){
        nmask=mask;
        nmask<<=1;
        could=1;
        for(int j=0;j<5;j++){
            nx=x+d[i][j][0];
            ny=y+d[i][j][1];
            if(nx<1||ny<1||nx>n||ny>m){
                could=0;
                break;
            }
            _now=find(x,y,nx,ny);
            if(mask&(_now>>1)){
                could=0;
                break;
            }
            nmask|=_now;
        }
        if(could){
            if(dfs(x,y+1,nmask)<res-1){
                continue;
            }
            for(int j=0;j<5;j++){
                nx=x+d[i][j][0];
                ny=y+d[i][j][1];
                s[nx][ny]=res+'A'-1;
            }
            if(found(x,y+1,nmask,res-1)){
                return 1;
            }
            for(int j=0;j<5;j++){
                nx=x+d[i][j][0];
                ny=y+d[i][j][1];
                s[nx][ny]='.';
            }
        }
    }
    return 0;
}
int main(){
    scanf("%d%d",&n,&m);
    if(n<3||m<3){
        puts("0");
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                putchar('.');
            }
            puts("");
        }
        return 0;
    }
    int ans=dfs(3,1,0);
    printf("%d\n",ans);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            s[i][j]='.';
        }
    }
    found(3,1,0,ans);
    for(int i=1;i<=n;i++){
        puts(s[i]+1);
    }
    puts("");
    return 0;
}

我的思路讲完了,接下来来看一下CF上各路神仙的解法吧,真的是……。
我们先来看一下fhlasek的解法:
他的代码很明显的一个暴力dfs+剪枝,但思路和我上面的dfs完全不一样。
思路:对于一个地图,我们枚举在哪一个上面放上一个T,如果可以放,就放了,放下去之后,再往下走一格,试着放一放,放得下,就放,再跳出,放不下,就跳出。
这个dfs的效率奇高,最慢的点只有128ms,(比我写的状压快多了)。
但我弄不明白为什么他要在程序中打一个表呢?我试着把表删去,再交一遍,同样是AC,那么,目的就出来啦:是为了将200ms以上的点变为30ms。不过真有这么重要么
下面是代码:

/* Writen by Filip Hlasek 2011 */
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <algorithm>
#include <cmath>

#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define REP(i,b) for(int i=0;i<b;i++)

using namespace std;

char u[10][10],b[10][10];
int N,M,best; 

bool ok(int x,int y){
  return x>=0&&y>=0&&x<N&&y<M&&u[x][y]=='.';
}

int D[4][5][2]={{{0,0},{1,0},{2,0},{0,1},{0,-1}},
                {{0,0},{-1,0},{-2,0},{0,1},{0,-1}},
                {{0,0},{0,1},{0,2},{1,0},{-1,0}},
                {{0,0},{0,-1},{0,-2},{1,0},{-1,0}}};

void dfs(int depth){
  if(depth > best){
    best=depth;
    REP(i,N) REP(j,M+1) b[i][j]=u[i][j];
  }
  bool found = false;
  int cntfound = 0;
  REP(x,N){
    REP(y,M){
      if(found) cntfound++;
      if(cntfound > 2) return;
      REP(S,4){
        bool uok = true;
        REP(d,5) if(!ok(x+D[S][d][0],y+D[S][d][1])) uok=false;
        if(!uok) continue;
        found = true;
        REP(d,5) u[x+D[S][d][0]][y+D[S][d][1]]='A'+depth;
        dfs(depth+1);
        REP(d,5) u[x+D[S][d][0]][y+D[S][d][1]]='.';
      }
    }
  }
}


int main(int argc, char *argv[]){
  scanf("%d%d",&N,&M);
  if(N==9&&M==9){
    printf("13\nAAABBBCCC\n.AD.BE.C.\n.AD.BE.C.\nFDDDEEE.H\nFFFGGGHHH\nFIIIGJJJH\n.LIKG.JM.\n.LIKKKJM.\nLLLK..MMM\n");
    return 0;
  }
  if(N==9&&M==8){
    printf("12\nAAABBB.C\n.AD.BCCC\n.AD.B.EC\nFDDDEEE.\nFFFGGGEI\nFHHHGIII\n.KHJG.LI\n.KHJJJL.\nKKKJ.LLL\n");
    return 0;
  }
  REP(i,N) REP(j,M) u[i][j]='.';
  REP(i,N) u[i][M]='\0';
  REP(i,N) REP(j,M+1) b[i][j]=u[i][j];
  best=0;
  dfs(0);
  printf("%d\n",best);
  REP(i,N) printf("%s\n",b[i]);
  return 0;
}

接下来的解法是来自pavel的:
思路:暴力dfs+剪枝,(1)如果剩下的格子个数除以5下取整加上当前的答案还没有当前更新的最终答案要大,就可以return了,(2)如果剩下的格子去掉2行2列之后剩下的格子数加上当前答案还没有当前的最终答案大,就可以return了。思路很好理解,代码也很好实现。
下面是代码:

#define mp make_pair
#define pb push_back                     
#define setval(a,v) memset(a,v,sizeof(a))

#if ( _WIN32 || __WIN32__ )
    #define LLD "%I64d"
#else
    #define LLD "%lld"
#endif

using namespace std;

typedef long long ll;
typedef long double ld;

char s[10][10];
char bs[10][10];

int ans;

int start = clock();

const int dx[4][5] = {{0,1,2,1,1},{0,1,2,2,2},{1,1,0,1,2},{0,0,1,2,0}};
const int dy[4][5] = {{0,0,0,1,2},{1,1,0,1,2},{0,1,2,2,2},{0,1,1,1,2}};
int n,m;

bool q,q1;

void dfs(int x,int y,int cur){
    if (cur == ans){
      memcpy(bs,s,sizeof(bs));
      q = q1 = true;
      return;
    }
    if (x >= n-2){
        if (clock() - start > 2.7*CLOCKS_PER_SEC)
           q = true, q1 = false; 
        return;
    }
    if (y >= m-2){
        dfs(x+1,0,cur);
        return;
    }
    if (((m-y+1)+(n-x)*m)/5 + cur <= ans)
        return;
    if ((m-y-1)+(n-x-2)*m+cur <= ans)
        return;
    for (int i = 0; i < 4; i++){
        bool ok = !q;
        for (int j = 0; j < 5; j++)
            ok &= s[x+dx[i][j]][y+dy[i][j]] == 0;
        if (ok){
            for (int j = 0; j < 5; j++)
                s[x+dx[i][j]][y+dy[i][j]] = 'A'+cur;
            dfs(x,y+1,cur+1);
            for (int j = 0; j < 5; j++)
                s[x+dx[i][j]][y+dy[i][j]] = 0;
        }
    }
    if (!q)
        dfs(x,y+1,cur);
}


int main()
{
  #ifdef LOCAL
    freopen("input.txt","r",stdin);
    freopen("output.txt","w",stdout);
  #endif

  scanf("%d %d",&n,&m);
  if (n > 2 && m > 2){
      for (ans = 0; ; ans++){
        cerr << ans << endl;
        q = q1= false;
        dfs(0,0,0);
        if (!q1){
            ans--;
            break;
        }
      }
  }
  printf("%d\n",ans);
  for (int i = 0; i < n; i++,printf("\n"))
    for (int j = 0; j < m; j++)
        if (bs[i][j] == 0)
            printf(".");
        else
            printf("%c",bs[i][j]); 
  return 0;
}

接下来看Fefer_Ivan巨佬的:
思路:这一位和上面pavel巨佬的解法思路差不多,并且他的代码还没有第(2)个剪枝,但是他十分有个性地用了一个状态压缩,把一整张地图的每一列压成了一个int,让后就很华丽丽地将dfs中的时间复杂度从\(O(9\cdot 4)\)优化到了\(O(4)\),但是思维复杂度就迅速地往上涨。
下面是代码:

#include <algorithm>
#include <functional>
#include <numeric>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <cassert>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <bitset>
#include <sstream>

using namespace std;

#define forn(i, n) for(int i = 0; i < int(n); ++i)
#define for1(i, n) for(int i = 1; i <= int(n); ++i)
#define ford(i, n) for(int i = int(n) - 1; i >= 0; --i)
#define fore(i, l, r) for(int i = int(l); i < int(r); ++i)
#define sz(v) int((v).size())
#define all(v) (v).begin(), (v).end()
#define pb push_back
#define X first
#define Y second

typedef long long li;
typedef long double ld;
typedef pair<int, int> pt;

template<typename T> T abs(T a) { return a < 0 ? -a : a; }
template<typename T> T sqr(T a) { return a*a; }

const int INF = (int)1e9;
const ld EPS = 1e-9;
const ld PI = 3.1415926535897932384626433832795;

//const int ch[] = {3, 3, };

int n, m;
int used[20];

int t[20][20];

int cur;
int ans;
int ax[20], ay[20], ar[20];
int cx[20], cy[20], cr[20];

char f[20][20];

inline bool check(int x, int y, int* a){
    return ((used[x] >> y) & a[0]) == 0 &&
           ((used[x + 1] >> y) & a[1]) == 0 &&
           ((used[x + 2] >> y) & a[2]) == 0;
}

const int MAGIC = 80000000;
int curIter;

void solve(int x, int y){
    if(x + 3 > n){
        if(ans < cur){
            ans = cur;
            memcpy(ax, cx, sizeof(int)*ans);
            memcpy(ay, cy, sizeof(int)*ans);
            memcpy(ar, cr, sizeof(int)*ans);  
        }
        return;
    }

    if(y + 3 > m)
        return solve(x + 1, 0);

    if(5*(ans - cur + 1) > (n - x - 1)*m + m - y)
        return;

    if(curIter > MAGIC)
        return;
    curIter++;

    forn(i, 4)
        if(check(x, y, t[i])){
            for(int j = x; j < x + 3; ++j)
                used[j] |= (t[i][j - x] << y);
            cx[cur] = x;
            cy[cur] = y;
            cr[cur] = i;
            cur++;

            solve(x, y + 1);

            cur--;
            for(int j = x; j < x + 3; ++j)
                used[j] ^= (t[i][j - x] << y);
        }

    solve(x, y + 1);
}

int main(){
    #ifndef ONLINE_JUDGE
        freopen("input.txt", "rt", stdin);
        //freopen("output.txt", "wt", stdout);
    #endif
    
    t[0][0] = 7;
    t[0][1] = 2;
    t[0][2] = 2;

    t[1][0] = 4;
    t[1][1] = 7;
    t[1][2] = 4;

    t[2][0] = 2;
    t[2][1] = 2;
    t[2][2] = 7;

    t[3][0] = 1;
    t[3][1] = 7;
    t[3][2] = 1;

    cin >> n >> m;

    solve(0, 0);

    cout << ans << endl;

    char c = 'A';

    forn(i, n)
    forn(j, m)
        f[i][j] = '.';

    forn(i, ans){
        int x = ax[i];
        int y = ay[i];
        int r = ar[i];

        forn(j, 3)
        forn(k, 3)
            if((t[r][j] >> k) & 1)
                f[x + j][y + k] = c;

        ++c;
    }

    forn(i, n)
        printf("%s\n", f[i]);

    cerr << clock() << endl;

    return 0;
}

接下来这一段是ir5的思路+代码:
思路:说真心话,我在翻到他的代码的时候,第一反应是:这是这一题的代码么!
好吧,这一个思路嘛,最重要的就是信仰,代码分为两个步骤完成,第一个步骤是计算出最小值,第二个步骤是计算出方案。我先透露一下啊,这一个代码的正确性是很难保证的,没准你哪次rp极低,交上去就WA了呢。
预处理一下,如果我在当前的地方放了一个某种形状的T,那有多少个地方不能某种形状的T,把全部存起来。
然后,随机的摆一些不重复的T,直到不能摆为止。
是不是很玄学啊,如果有点懵逼的话先看一下代码把。
然后进行计算方案,暴力,加上根据预处理以及答案得出的最优性及可行性剪枝,就可以了。
看代码吧:(能想出这种解法的真是神仙

#include <cstdio>
#include <cstring>
#include <cstdlib>
// #include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <cassert>
using namespace std;
typedef long long ll;

#define REP(i,n) for (int i=0; i<(int)(n); ++i)
#define FOR(i,k,n) for (int i=(k); i<(int)(n); ++i)
#define FOREQ(i,k,n) for (int i=(k); i<=(int)(n); ++i)
#define FORIT(i,c) for(__typeof((c).begin())i=(c).begin();i!=(c).end();++i)
#define SZ(v) (int)((v).size())
#define MEMSET(v,h) memset((v),(h),sizeof(v))

const int dip[4][5][2] = {
    {
        {0, 0},
        {0, 1},
        {0, 2},
        {1, 1},
        {2, 1},
    },
    {
        {0, 2},
        {1, 0},
        {1, 1},
        {1, 2},
        {2, 2},
    },
    {
        {0, 1},
        {1, 1},
        {2, 0},
        {2, 1},
        {2, 2},
    },
    {
        {0, 0},
        {1, 0},
        {1, 1},
        {1, 2},
        {2, 0},
    },
};

typedef vector<int> V;

int N, M;
int code(int y, int x, int r) {
    return 4*(y*(M-2)+x)+r;
}

int K;
vector<V> vg;
int res;
bool f[300], h[300], g[300];
void solve(int idx, int cur) {
    int rest=0;
    FOR(i, idx, K) if (!f[i]) rest++;
    if (rest+idx <= res) return;
    if (idx==K) {
        res = cur;
        memcpy(g, h, sizeof(h));
        return;
    }

    // do not put
    solve(idx+1, cur);

    // put
    if (!f[idx]) {
        bool tmp[300];
        memcpy(tmp, f, sizeof(f));
        FORIT(ito, vg[idx]) {
            f[*ito] = true;
        }
        h[idx] = true;

        solve(idx+1, cur+1);
        // revert
        memcpy(f, tmp, sizeof(f));
        h[idx] = false;
    }
}

void find_maximal() {
    int cur=0;
    REP(i, 300) {
        int idx = rand()%K;
        if (!f[idx]) {
            FORIT(ito, vg[idx]) {
                f[*ito] = true;
            }
            f[idx] = true;
            h[idx] = true;
            cur++;
        }
    }
    if (cur > res) {
        res = cur;
        memcpy(g, h, sizeof(g));
    }
}

int main() {
    // memoize 2 lines
    while (cin >> N >> M) {
        if (N<=2 || M<=2) {
            // no solution
            puts("0");
            REP(i, N) {
                REP(j, M) printf(".");
                puts("");
            }
            continue;
        }

        if (N==8 && M==9) {
            cout<<12<<endl;
            cout<<"AAA.BBB.C\n.ADDDBCCC\nEA.DFB.GC\nEEEDFFFG.\nEHHHFIGGG\n.JH.KIIIL\n.JH.KILLL\nJJJKKK..L\n";
            continue;
        }
        if (N==9 && M==9) {
            cout<<13<<endl;
            cout<<"A.BBBCDDD\nAAAB.C.D.\nAE.BCCCDF\n.EEEGHFFF\n.EGGGHHHF\nIII.GHJJJ\n.IKLLLMJ.\n.IK.L.MJ.\n.KKKLMMM.\n";
            continue;
        }
        if (N==9 && M==8) {
            cout<<12<<endl;
            cout<<"AAA.BCCC\n.ABBBDC.\n.A.EBDC.\nFEEEDDDG\nFFFEHGGG\nFIIIHHHG\n.JIKHLLL\n.JIKKKL.\nJJJK..L.\n";
            continue;
        }


        K=4*(N-2)*(M-2);
        vg = vector<V>(K);
        REP(y1, N-2) REP(x1, M-2) REP(r1, 4) {
            REP(y2, N-2) REP(x2, M-2) REP(r2, 4) {
                bool col = false;
                REP(u1, 5) REP(u2, 5) {
                    int ay1=y1+dip[r1][u1][0];
                    int ax1=x1+dip[r1][u1][1];

                    int ay2=y2+dip[r2][u2][0];
                    int ax2=x2+dip[r2][u2][1];

                    if (ay1==ay2 && ax1==ax2) {
                        col = true;
                    }
                }
                if (col) {
                    vg[code(y1, x1, r1)].push_back(code(y2, x2, r2));
                }
            }
        }
        REP(y, N-2) REP(x, M-2) REP(r1, 4) REP(r2, 4) if (r1 != r2) {
            vg[code(y, x, r1)].push_back(code(y, x, r2));
        }

        // solve(0, 0);
        res=0;
        MEMSET(g, false);
        REP(itr, 50000) {
            MEMSET(f, false);
            MEMSET(h, false);
            find_maximal();
        }

        printf("%d\n", res);
        // print
        vector<string> res(N, string(M, '.'));

        int z=0;
        REP(i, K) if (g[i]) {
            int x=i/4%(M-2), y=i/4/(M-2), r=i%4;
            REP(u, 5) {
                res[y+dip[r][u][0]][x+dip[r][u][1]] = 'A'+z;
            }
            z++;
        }
        /*
        REP(i, N) cout<<res[i]<<"\\n";
        cout<<endl;
        */
        REP(i, N) cout<<res[i]<<endl;
    }
}

接下来看一下black_horse2014的思路及代码:
思路:状态压缩动态规划,令\(f[i][mask]\)表示:到了第\(i\)行时,上面两行的状态为\(mask\)时的最多方案数。
那么状态转移方程时很显然的,我们在开一个数组记录一下当前行的选择,就可以很容易地转换出最终的方案。
虽然说口胡很简单,但是代码实现还是非常难的,需要对位运算以及状态压缩DP有很深刻的掌握。
下面是代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
typedef pair<int, LL> PIL;
typedef pair<LL, int> PLI;
typedef vector<int> VI;
typedef vector<PII> VPII;
typedef double DB;

#define pb push_back
#define mset(a, b) memset(a, b, sizeof a)
#define all(x) (x).begin(), (x).end()
#define bit(x) (1 << (x))
#define bitl(x) (1LL << (x))
#define sqr(x) ((x) * (x))
#define sz(x) ((int)(x.size()))
#define cnti(x) (__builtin_popcount(x))
#define cntl(x) (__builtin_popcountll(x))
#define clzi(x) (__builtin_clz(x))
#define clzl(x) (__builtin_clzll(x))
#define ctzi(x) (__builtin_ctz(x))
#define ctzl(x) (__builtin_ctzll(x))

#define X first
#define Y second

#define Error(x) cout << #x << " = " << x << endl

template <typename T, typename U>
inline void chkmax(T& x, U y) {
	if (x < y) x = y;
}

template <typename T, typename U>
inline void chkmin(T& x, U y) {
	if (y < x) x = y;
}

int n, m;

int dp[10][bit(18)];
int f[10][bit(18)];
int g[10][bit(18)];

const int dx[][5] = {{0, 0, 0, 1, 2}, {0, 1, 1, 1, 2}, {0, 1, 2, 2, 2}, {0, 1, 1, 1, 2}};
const int dy[][5] = {{0, 1, 2, 1, 1}, {2, 0, 1, 2, 2}, {1, 1, 0, 1, 2}, {0, 0, 1, 2, 0}};

bool out(int x, int y) {
	return x > n || y >= m || y < 0;
}

int S;
char s[10][10];

void go(int r, int state, int nstate, int pos, long long add, int cnt) {
	if (pos == m) {
		if(dp[r][nstate] < cnt) {
			dp[r][nstate] = cnt;
			f[r][nstate] = add;
			g[r][nstate] = S;
		}
		return;
	}
	go(r, state, nstate, pos + 1, add, cnt);
	int x = r, y = pos;
	for (int i = 0; i < 4; i++) {
		bool flg = 1;
		for (int j = 0; flg && j < 5; j++) {
			int nx = x + dx[i][j], ny = y + dy[i][j];
			if (out(nx, ny)) {
				flg = 0;
				break;
			}
			if (nx <= r + 1) {
				if (state >> ((nx - r) * m + ny) & 1) {
					flg = 0;
					break;
				}
			} else {
				if (nstate >> (m + ny) & 1) {
					flg = 0;
					break;
				}
			}
		}
		if (!flg) continue;
		int cstate = state, cnstate = nstate, cadd = add | bitl(pos*4+i);
		for (int j = 0; flg && j < 5; j++) {
			int nx = x + dx[i][j], ny = y + dy[i][j];
			if (nx <= r + 1) {
				cstate |= bit((nx-r)*m+ny);
				if (nx == r + 1) {
					cnstate |= bit(ny);
				}
			} else {
				cnstate |= bit(ny + m);
			}
		}
		go(r, cstate, cnstate, pos + 1, cadd, cnt + 1);
	}
}

int main() {
	
	scanf("%d%d", &n, &m);
	if (n <= 2 || m <= 2) {
		puts("0");
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < m; j++) putchar('.');
			puts("");
		}
		return 0;
	}
	memset(dp, -1, sizeof dp);
	dp[0][0] = 0;
	for (int i = 1; i <= n-2; i++) {
		for (int j = 0; j < bit(2*m); j++) if (~dp[i-1][j]) {
			S = j;
			go(i, j, j >> m, 0, 0, dp[i-1][j]);
		}
	}
	int ans = 0, opt = 0;
	for (int j = 0; j < bit(2*m); j++) {
		if (dp[n-2][j] > ans) {
			ans = dp[n-2][j];
			opt = j;
		}
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 0; j < m; j++) s[i][j] = '.';
		s[i][m] = 0;
	}
	int r = n-2;
	int tot = ans;
	cout << ans << endl;
	while (r > 0) {
		long long st = f[r][opt];
		for (int i = m-1; i >= 0; i--) {
			for (int j = 0; j < 4; j++) {
				if (st >> (4*i+j) & 1) {
					int x = r, y = i;
					for (int k = 0; k < 5; k++) {
						int nx = x + dx[j][k], ny = y + dy[j][k];
						s[nx][ny] = 'A' + tot - 1;
					}
					tot--;
				}
			}
		}
		opt = g[r][opt], r--;
	}
	for (int i = 1; i <= n; i++) {
		puts(s[i]);
	}
	return 0;
}

接下来是coder的:
思路:对于一些打表我已经无力去吐槽了他的代码,我们可以直接砍掉\(\frac{2}{3}\)。思路十分简单,暴力dfs,并且将最后剩下的一点直接打表处理最优,然后利用这一个剪枝,所以,就直接看代码啦(只需要看go和main函数的)。

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <map>
#include <cstring>
typedef long long ll;
const int inf = 1000000009;
const double pi = acos(-1.0);
using namespace std;

int i, j, k, m, n, cnt, e = -1;

char ans[10][10], cur[10][10];

signed char d[10][10][1<<9][1<<9];


string z = "AAA.BCCC..ABBB.CD..AE.BFCD.EEEFFFDDDG.E.HFIIIGGGJHHHI.GK.JHL.IM.KJJJLMMMKKK.LLL.M";

inline void setit(int a, int b, int k, int& x, int& y) {
    if (b & (1<<k)) {
        x = a | (1<<k);
        y = b ^ (1<<k);
    } else {
        if (a & (1<<k)) {
            x = a ^ (1<<k);
        } else x = a;
        y = b;
    }
}

signed char solve(int x, int y, int m1, int m2) {
    if (y >= n) return solve(x+1, 0, m1, m2);
    if (x >= m) {
        return 0;
    }
    signed char& ret = d[x][y][m1][m2];
    if (ret != -1) return ret;
    ret = 0;

    // skip
    int t1, t2;
    setit(m1, m2, y, t1, t2);
    ret = solve(x, y+1, t1, t2);

    if (y + 3 <= n) {
        if ( (m1 & (1<<y)) || (m1 & (1<<(y+1))) || (m1 & (1<<(y+2))) || (m2 & (1<<(y+1))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);

            t2 |= (1<<(y+1));
            t1 |= (1<<(y+1));
            t1 |= (1<<(y+2));

            if (solve(x, y+2, t1, t2) + 1 > ret) ret = solve(x, y+2, t1, t2) + 1;
        }

        if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y+2))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);
            setit(t1, t2, y+2, t1, t2);

            t2 |= (1<<(y+2));
            t1 |= (1<<(y+1));
            t1 |= (1<<(y));
            t1 |= (1<<(y+2));

            if (solve(x, y+3, t1, t2) + 1 > ret) ret = solve(x, y+3, t1, t2) + 1;
        }

        if ((m1 & (1<<(y+1))) || (m2 & (1<<(y+1))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);
            setit(t1, t2, y+2, t1, t2);

            t2 |= (1<<(y+1));
            t2 |= (1<<(y));
            t2 |= (1<<(y+2));
            t1 |= (1<<(y+1));

            if (solve(x, y+3, t1, t2) + 1 > ret) ret = solve(x, y+3, t1, t2) + 1;
        }

        if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);
            setit(t1, t2, y+2, t1, t2);

            t2 |= (1<<(y));
            t1 |= (1<<(y+1));
            t1 |= (1<<(y));
            t1 |= (1<<(y+2));

            if (solve(x, y+3, t1, t2) + 1 > ret) ret = solve(x, y+3, t1, t2) + 1;
        }
    }

    return ret;
}

void rec(int x, int y, int m1, int m2, int ret) {
    if (y >= n) {
        rec(x+1, 0, m1, m2, ret);
        return;
    }
    if (x >= m) {
        return;
    }

    // skip
    int t1, t2;
    setit(m1, m2, y, t1, t2);
    if (ret  == solve(x, y+1, t1, t2)) {
        rec(x, y+1, t1, t2, ret);
        return;
    }

    if (y + 3 <= n) {
        if ( (m1 & (1<<y)) || (m1 & (1<<(y+1))) || (m1 & (1<<(y+2))) || (m2 & (1<<(y+1))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);
            setit(t1, t2, y+2, t1, t2);

            t2 |= (1<<(y+1));
            t1 |= (1<<(y+1));

            if (solve(x, y+3, t1, t2) + 1 == ret) {
                rec(x, y+3, t1, t2, ret-1);
                ans[x-2][y]=ans[x-2][y+1]=ans[x-2][y+2] = ans[x-1][y+1] = ans[x][y+1] = ret + 'A' - 1;
                return;
            }
        }

        if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y+2))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);
            setit(t1, t2, y+2, t1, t2);

            t2 |= (1<<(y+2));
            t1 |= (1<<(y+1));
            t1 |= (1<<(y));
            t1 |= (1<<(y+2));

            if (solve(x, y+3, t1, t2) + 1 == ret) {
                rec(x, y+3, t1, t2, ret-1);
                ans[x-2][y+2]=ans[x-1][y]=ans[x-1][y+1] = ans[x-1][y+2] = ans[x][y+2] = ret + 'A' - 1;
                return;
            }

        }

        if ((m1 & (1<<(y+1))) || (m2 & (1<<(y+1))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);
            setit(t1, t2, y+2, t1, t2);

            t2 |= (1<<(y+1));
            t2 |= (1<<(y));
            t2 |= (1<<(y+2));
            t1 |= (1<<(y+1));

            if (solve(x, y+3, t1, t2) + 1 == ret) {
                rec(x, y+3, t1, t2, ret-1);
                ans[x-2][y+1]=ans[x-1][y+1]=ans[x][y] = ans[x][y+1] = ans[x][y+2] = ret + 'A' - 1;
                return;
            }

        }

        if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y))));
        else {
            setit(m1, m2, y, t1, t2);
            setit(t1, t2, y+1, t1, t2);
            setit(t1, t2, y+2, t1, t2);

            t2 |= (1<<(y));
            t1 |= (1<<(y+1));
            t1 |= (1<<(y));
            t1 |= (1<<(y+2));

            if (solve(x, y+3, t1, t2) + 1 == ret) {
                rec(x, y+3, t1, t2, ret-1);
                ans[x-2][y]=ans[x-1][y]=ans[x-1][y+1] = ans[x-1][y+2] = ans[x][y] = ret + 'A' - 1;
                return;
            }

        }
    }

    throw 9;
}

const string H[3]={"###..#.#.#..",".#.###.#.###",".#...#####.."};
int best = 0;

void go(int x, int y, int c) {


    if (c > best) {
        best = c;
        for (i = 0; i < m; i++)
            for (j = 0; j < n; j++)
                ans[i][j] = cur[i][j];
    }
    if (x + 3 > m) {
        return;
    }
    if (y + 3 > n) {
        go(x+1, 0, c);
        return;
    }

    for (int k = 0; k < 4; k++) {
        int f = 0;
        for (int i = 0; i < 3; i++)
            for (int j = 0; j < 3; j++)
                if (H[i][k*3+j] == '#' && cur[x+i][y+j] != 0) f = 1;
        if (f) continue;
        for (int i = 0; i < 3; i++)
            for (int j = 0; j < 3; j++)
                if (H[i][k*3+j] == '#') cur[x+i][y+j] = c + 'A';
        go(x, y+1, c+1);
        for (int i = 0; i < 3; i++)
            for (int j = 0; j < 3; j++)
                if (H[i][k*3+j] == '#') cur[x+i][y+j] = 0;
    }

    if (y == 0 && m - x <= 6) {
        int t= 0;
        if (m - x == 6) t = 8;
        else if (m -x == 5) t = 7;
        else if (m-x == 4) t = 5;
        else if (m-x == 3) t = 4;
        if (t + c <= best) return;
    }


    go(x, y+1, c);
}


int main()
{

    cin >> m >> n;

    if (m == 9 && n == 9) {
        cout << 13 << endl;
        for (i = 0; i < 9; i++) {
            for (j = 0; j < 9; j++) {
                cout << z[9*i+j];
            }
            cout << endl;
        }
        return 0;
    }


/*    if (m >= 3 && n >= 3) {
        memset(d, -1, sizeof(d));
        cnt = solve(2, 0, 0, 0);
        cout << cnt << endl;
        rec(2, 0, 0, 0, cnt);
    } else {
        cout << 0 << endl;
    }*/

    go(0, 0, 0);
    cout << best << endl;
    for (i = 0; i < m; i++)
        for (j = 0; j < n; j++)
            if (ans[i][j] == 0) ans[i][j] = '.';

    for (i = 0; i < m; i++)
        puts(ans[i]);

    return 0;
}

最后一个Kostroma的,真的是,悲惨。
思路:暴力dfs+一个用途不大的剪枝,然后就T飞了。
他的代码是暴力处理出了所有的T情况,这个代码量就……
先看一下最原始的代码:

TLE on test 76

//#pragma comment(linker, "/STACK:64000000")
#pragma hdrstop
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <math.h>
#include <vector>
#include <set>
using namespace std;
/*
BE CAREFUL: ISN'T INT EQUAL TO LONG LONG?

REAL SOLUTION AFTER MAIN FUNCTION
*/
#define mp make_pair
#define pb push_back
typedef long long li;
typedef long double ld;
typedef pair <int, int> pi;
void solve();

int main ()
{
       
#ifdef _DEBUG
    freopen ("in.txt", "r", stdin);
#endif
    int t=1;

        //cout<<t<<endl;

    while (t--)
                solve();
    return 0;
}

//#define int li

int n, m;
char a[10][10];
char answer[10][10];
vector < pi > need;
int ans=0;
bool modify1 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x, y+1));
	need.pb (mp(x, y+2));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo1 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x, y+1));
	need.pb (mp(x, y+2));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}

bool modify2 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+1, y+2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo2 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+1, y+2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
bool modify3 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y-1));
	need.pb (mp(x+1, y-2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo3 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y-1));
	need.pb (mp(x+1, y-2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
bool modify4 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+2, y));
	need.pb (mp(x+2, y-1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo4 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+2, y));
	need.pb (mp(x+2, y-1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
void rec ( char c, int x, int y, int done=0 )
{
	bool all=true;
	for (int i=x; i<n && i<x+3; i++)
		for ( int j=((i==x)?y:0); j<m; j++ )
		{
			if ( ans*5+done>n*m+4 )
				return;
			if (a[i][j]==1)
				done++;
			else 
				continue;
			if (modify1 (c, i, j))
			{
				all=false;
				rec(c+1, i, j+1, done-1);
				undo1 (c, i, j);
			}
			if (modify2 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo2 (c, i, j);
			}
			if (modify3 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo3 (c, i, j);
			}
			if (modify4 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo4 (c, i, j);
			}
		}
	if (all)
	{
		if (c-'A'>ans)
		{
			ans=c-'A';
			for (int i=0; i<n; i++)
				for (int j=0; j<m; j++)
					answer[i][j]=a[i][j];
		}
	}
}

void solve ()
{
     cin>>n>>m;
	 for (int i=0; i<n; i++)
		 for (int j=0; j<m; j++)
			 a[i][j]=answer[i][j]=1;
	 
	 rec ('A', 0, 0);
	 cout<<ans<<endl;
	 for (int i=0; i<n; i++)
	 {
		 for (int j=0; j<m; j++)
			 if (answer[i][j]==1)
				 cout<<".";
			 else
				 cout<<answer[i][j];
		 cout<<endl;
	 }
} 

十分好理解。
为了避免再次T掉,Kostroma加上了一些表,然后没有用地跑到了第79个点。

TLE on test 79

//#pragma comment(linker, "/STACK:64000000")
#pragma hdrstop
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <math.h>
#include <vector>
#include <set>
using namespace std;
/*
BE CAREFUL: ISN'T INT EQUAL TO LONG LONG?

REAL SOLUTION AFTER MAIN FUNCTION
*/
#define mp make_pair
#define pb push_back
typedef long long li;
typedef long double ld;
typedef pair <int, int> pi;
void solve();

int main ()
{
       
#ifdef _DEBUG
    freopen ("in.txt", "r", stdin);
#endif
    int t=1;

        //cout<<t<<endl;

    while (t--)
                solve();
    return 0;
}

//#define int li

int n, m;
char a[10][10];
char answer[10][10];
vector < pi > need;
int ans=0;
bool modify1 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x, y+1));
	need.pb (mp(x, y+2));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo1 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x, y+1));
	need.pb (mp(x, y+2));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}

bool modify2 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+1, y+2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo2 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+1, y+2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
bool modify3 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y-1));
	need.pb (mp(x+1, y-2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo3 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y-1));
	need.pb (mp(x+1, y-2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
bool modify4 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+2, y));
	need.pb (mp(x+2, y-1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo4 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+2, y));
	need.pb (mp(x+2, y-1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
void rec ( char c, int x, int y, int done=0 )
{
	bool all=true;
	for (int i=x; i<n && i<x+3; i++)
		for ( int j=((i==x)?y:0); j<m; j++ )
		{
			if ( ans*5+done>n*m+3 || done>16)
				return;
			if (a[i][j]==1)
				done++;
			else 
				continue;
			if (modify1 (c, i, j))
			{
				all=false;
				rec(c+1, i, j+1, done-1);
				undo1 (c, i, j);
			}
			if (modify2 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo2 (c, i, j);
			}
			if (modify3 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo3 (c, i, j);
			}
			if (modify4 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo4 (c, i, j);
			}
		}
	if (all)
	{
		if (c-'A'>ans)
		{
			ans=c-'A';
			for (int i=0; i<n; i++)
				for (int j=0; j<m; j++)
					answer[i][j]=a[i][j];
		}
	}
}

void solve ()
{
     cin>>n>>m;
	 for (int i=0; i<n; i++)
		 for (int j=0; j<m; j++)
			 a[i][j]=answer[i][j]=1;
	if (n==7 && m==9)
	{
		cout<<"10\nAAAB..CCC\n.ADBBB.C.\n.ADBEEECF\nGDDD.EFFF\nGGGHIE.JF\nGHHHIIIJ.\n...HI.JJJ";
		return;
	}
	if (n==9 && m==7)
	{
		cout<<"10\nAAABBB.\n.A..BC.\nDA.EBC.\nDDDECCC\nDFEEE.G\n.FFFGGG\nHFIIIJG\nHHHI.J.\nH..IJJJ";
		return;
	}
	if (n==8 && m==8)
	{
		cout<<"10\nAAABBBC.\n.A..B.C.\nDA..BCCC\nDDDEEE.F\nDGGGEFFF\n.HGIE.JF\n.HGIIIJ.\nHHHI.JJJ";
		return;
	}
	 rec ('A', 0, 0);
	 cout<<ans<<endl;
	 for (int i=0; i<n; i++)
	 {
		 for (int j=0; j<m; j++)
			 if (answer[i][j]==1)
				 cout<<".";
			 else
				 cout<<answer[i][j];
		 cout<<endl;
	 }
} 

最后,他又加上了两个表,然后很华丽地T81。

TLE on test 81

//#pragma comment(linker, "/STACK:64000000")
#pragma hdrstop
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <math.h>
#include <vector>
#include <set>
using namespace std;
/*
BE CAREFUL: ISN'T INT EQUAL TO LONG LONG?

REAL SOLUTION AFTER MAIN FUNCTION
*/
#define mp make_pair
#define pb push_back
typedef long long li;
typedef long double ld;
typedef pair <int, int> pi;
void solve();

int main ()
{
       
#ifdef _DEBUG
    freopen ("in.txt", "r", stdin);
#endif
    int t=1;

        //cout<<t<<endl;

    while (t--)
                solve();
    return 0;
}

//#define int li

int n, m;
char a[10][10];
char answer[10][10];
vector < pi > need;
int ans=0;
bool modify1 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x, y+1));
	need.pb (mp(x, y+2));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo1 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x, y+1));
	need.pb (mp(x, y+2));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}

bool modify2 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+1, y+2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo2 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y+1));
	need.pb (mp(x+1, y+2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
bool modify3 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y-1));
	need.pb (mp(x+1, y-2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo3 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+1, y-1));
	need.pb (mp(x+1, y-2));
	need.pb (mp(x+2, y));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
bool modify4 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+2, y));
	need.pb (mp(x+2, y-1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
			return false;
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=c;
	return true;
}
void undo4 (char c, int x, int y)
{
	need.resize(0);
	need.pb (mp(x, y));
	need.pb (mp(x+1, y));
	need.pb (mp(x+2, y));
	need.pb (mp(x+2, y-1));
	need.pb (mp(x+2, y+1));
	for (int i=0; i<need.size(); i++)
		a[need[i].first][need[i].second]=1;
}
void rec ( char c, int x, int y, int done=0 )
{
	bool all=true;
	for (int i=x; i<n && i<x+3; i++)
		for ( int j=((i==x)?y:0); j<m; j++ )
		{
			if ( ans*5+done>n*m+3 || done>16)
				return;
			if (a[i][j]==1)
				done++;
			else 
				continue;
			if (modify1 (c, i, j))
			{
				all=false;
				rec(c+1, i, j+1, done-1);
				undo1 (c, i, j);
			}
			if (modify2 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo2 (c, i, j);
			}
			if (modify3 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo3 (c, i, j);
			}
			if (modify4 (c, i, j))
			{
				all=false;
				rec (c+1, i, j+1, done-1);
				undo4 (c, i, j);
			}
		}
	if (all)
	{
		if (c-'A'>ans)
		{
			ans=c-'A';
			for (int i=0; i<n; i++)
				for (int j=0; j<m; j++)
					answer[i][j]=a[i][j];
		}
	}
}

void solve ()
{
     cin>>n>>m;
	 for (int i=0; i<n; i++)
		 for (int j=0; j<m; j++)
			 a[i][j]=answer[i][j]=1;
	if (n==7 && m==9)
	{
		cout<<"10\nAAAB..CCC\n.ADBBB.C.\n.ADBEEECF\nGDDD.EFFF\nGGGHIE.JF\nGHHHIIIJ.\n...HI.JJJ";
		return;
	}
	if (n==9 && m==7)
	{
		cout<<"10\nAAABBB.\n.A..BC.\nDA.EBC.\nDDDECCC\nDFEEE.G\n.FFFGGG\nHFIIIJG\nHHHI.J.\nH..IJJJ";
		return;
	}
	if (n==8 && m==8)
	{
		cout<<"10\nAAABBBC.\n.A..B.C.\nDA..BCCC\nDDDEEE.F\nDGGGEFFF\n.HGIE.JF\n.HGIIIJ.\nHHHI.JJJ";
		return;
	}
	if (n==8 && m==9)
	{
		cout<<"12\nA.BBBC...\nAAABDCCCE\nA.FBDCEEE\nFFFDDDG.E\nH.FIIIGGG\nHHHJIKG.L\nHJJJIKLLL\n...JKKK.L";
		return;
	}
	if (n==9 && m==8)
	{
		cout<<"12\nAAABBB.C\n.AD.BCCC\n.AD.B.EC\nFDDDEEE.\nFFFGGGEH\nFIIIGHHH\n.JIKG.LH\n.JIKKKL.\nJJJK.LLL";
		return;
	}
	 rec ('A', 0, 0);
	 cout<<ans<<endl;
	 for (int i=0; i<n; i++)
	 {
		 for (int j=0; j<m; j++)
			 if (answer[i][j]==1)
				 cout<<".";
			 else
				 cout<<answer[i][j];
		 cout<<endl;
	 }
} 

如果给他的代码手动加上一个\(9\times 9\)的情况就能AC了呢。

posted @ 2019-02-27 20:38  with_hope  阅读(397)  评论(0编辑  收藏  举报