Codeforces 1005 E2 - Median on Segments (General Case Edition)

E2 - Median on Segments (General Case Edition)

思路:

首先我们计算出solve(m):中位数大于等于m的方案数,那么最后答案就是solve(m) - solve(m+1)

那么怎么计算sovle(m)呢?

对于一个区间[l,r],如果它的中位数大于等于m,那么这个区间中 (大于等于m的数的个数) > (小于m的数的个数)

如果记a[i]大于等于m为+1,小于m 为 -1,即 sum(l, r)  > 0

我们枚举右端点 i ,并且同时计算sum(1, i) ,那么对于这个右端点,我们只要找到之前的 sum 中 < sum(1, i)的个数(左端点的个数),这个可以用树状数组维护

但是我们有一个O(n)的方法求,用了类似莫队的方法,记s[i]为之前的sum为i的个数,add为上一个小于sum(1, i-1)的个数,对于当前的sum,

如果它要加1,add += s[sum],  sum++

如果它要减1,sum --, add -= s[sum]

这样得出的add就是当前的小于sum(1, i)的个数

代码:

#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pii pair<int, int>
#define piii pair<int,pii>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head

const int N = 2e5 + 5;
int a[N], cnt[N*2], n, m;
LL solve(int m) {
    int s = n;
    mem(cnt, 0);
    cnt[s] = 1;
    LL add = 0, ans = 0;
    for (int i = 1; i <= n; i++) {
        if(a[i] >= m) add += cnt[s], s++;
        else s--, add -= cnt[s];
        cnt[s]++;
        ans += add;
    }
    return ans;
}
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    printf("%lld\n", solve(m) - solve(m+1));
    return 0;
}

 

posted @ 2018-07-10 17:19  Wisdom+.+  阅读(691)  评论(0编辑  收藏  举报