Android数据加密之Rsa加密

前言:

     最近无意中和同事交流数据安全传输的问题,想起自己曾经使用过的Rsa非对称加密算法,闲下来总结一下。

     其他几种加密方式:

什么是Rsa加密?

RSA算法是最流行的公钥密码算法,使用长度可以变化的密钥。RSA是第一个既能用于数据加密也能用于数字签名的算法。

RSA算法原理如下:

1.随机选择两个大质数p和q,p不等于q,计算N=pq; 
2.选择一个大于1小于N的自然数e,e必须与(p-1)(q-1)互素。 
3.用公式计算出d:d×e = 1 (mod (p-1)(q-1)) 。
4.销毁p和q。

最终得到的N和e就是“公钥”,d就是“私钥”,发送方使用N去加密数据,接收方只有使用d才能解开数据内容。

RSA的安全性依赖于大数分解,小于1024位的N已经被证明是不安全的,而且由于RSA算法进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,这是RSA最大的缺陷,因此通常只能用于加密少量数据或者加密密钥,但RSA仍然不失为一种高强度的算法。

 

该如何使用呢?

 第一步:首先生成秘钥对

    /**
     * 随机生成RSA密钥对
     *
     * @param keyLength 密钥长度,范围:512~2048
     *                  一般1024
     * @return
     */
    public static KeyPair generateRSAKeyPair(int keyLength) {
        try {
            KeyPairGenerator kpg = KeyPairGenerator.getInstance(RSA);
            kpg.initialize(keyLength);
            return kpg.genKeyPair();
        } catch (NoSuchAlgorithmException e) {
            e.printStackTrace();
            return null;
        }
    }

具体加密实现:

公钥加密

    /**
     * 用公钥对字符串进行加密
     *
     * @param data 原文
     */
    public static byte[] encryptByPublicKey(byte[] data, byte[] publicKey) throws Exception {
        // 得到公钥
        X509EncodedKeySpec keySpec = new X509EncodedKeySpec(publicKey);
        KeyFactory kf = KeyFactory.getInstance(RSA);
        PublicKey keyPublic = kf.generatePublic(keySpec);
        // 加密数据
        Cipher cp = Cipher.getInstance(ECB_PKCS1_PADDING);
        cp.init(Cipher.ENCRYPT_MODE, keyPublic);
        return cp.doFinal(data);
    }

私钥加密

    /**
     * 私钥加密
     *
     * @param data       待加密数据
     * @param privateKey 密钥
     * @return byte[] 加密数据
     */
    public static byte[] encryptByPrivateKey(byte[] data, byte[] privateKey) throws Exception {
        // 得到私钥
        PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(privateKey);
        KeyFactory kf = KeyFactory.getInstance(RSA);
        PrivateKey keyPrivate = kf.generatePrivate(keySpec);
        // 数据加密
        Cipher cipher = Cipher.getInstance(ECB_PKCS1_PADDING);
        cipher.init(Cipher.ENCRYPT_MODE, keyPrivate);
        return cipher.doFinal(data);
    }

公钥解密

 /**
     * 公钥解密
     *
     * @param data      待解密数据
     * @param publicKey 密钥
     * @return byte[] 解密数据
     */
    public static byte[] decryptByPublicKey(byte[] data, byte[] publicKey) throws Exception {
        // 得到公钥
        X509EncodedKeySpec keySpec = new X509EncodedKeySpec(publicKey);
        KeyFactory kf = KeyFactory.getInstance(RSA);
        PublicKey keyPublic = kf.generatePublic(keySpec);
        // 数据解密
        Cipher cipher = Cipher.getInstance(ECB_PKCS1_PADDING);
        cipher.init(Cipher.DECRYPT_MODE, keyPublic);
        return cipher.doFinal(data);
    }

私钥解密

 /**
     * 使用私钥进行解密
     */
    public static byte[] decryptByPrivateKey(byte[] encrypted, byte[] privateKey) throws Exception {
        // 得到私钥
        PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(privateKey);
        KeyFactory kf = KeyFactory.getInstance(RSA);
        PrivateKey keyPrivate = kf.generatePrivate(keySpec);

        // 解密数据
        Cipher cp = Cipher.getInstance(ECB_PKCS1_PADDING);
        cp.init(Cipher.DECRYPT_MODE, keyPrivate);
        byte[] arr = cp.doFinal(encrypted);
        return arr;
    }

几个全局变量解说:

    public static final String RSA = "RSA";// 非对称加密密钥算法
    public static final String ECB_PKCS1_PADDING = "RSA/ECB/PKCS1Padding";//加密填充方式
    public static final int DEFAULT_KEY_SIZE = 2048;//秘钥默认长度
    public static final byte[] DEFAULT_SPLIT = "#PART#".getBytes();    // 当要加密的内容超过bufferSize,则采用partSplit进行分块加密
    public static final int DEFAULT_BUFFERSIZE = (DEFAULT_KEY_SIZE / 8) - 11;// 当前秘钥支持加密的最大字节数

 

关于加密填充方式:之前以为上面这些操作就能实现rsa加解密,以为万事大吉了,呵呵,这事还没完,悲剧还是发生了,Android这边加密过的数据,服务器端死活解密不了,原来android系统的RSA实现是"RSA/None/NoPadding",而标准JDK实现是"RSA/None/PKCS1Padding" ,这造成了在android机上加密后无法在服务器上解密的原因,所以在实现的时候这个一定要注意。

实现分段加密:搞定了填充方式之后又自信的认为万事大吉了,可是意外还是发生了,RSA非对称加密内容长度有限制,1024位key的最多只能加密127位数据,否则就会报错(javax.crypto.IllegalBlockSizeException: Data must not be longer than 117 bytes) , RSA 是常用的非对称加密算法。最近使用时却出现了“不正确的长度”的异常,研究发现是由于待加密的数据超长所致。RSA 算法规定:待加密的字节数不能超过密钥的长度值除以 8 再减去 11(即:KeySize / 8 - 11),而加密后得到密文的字节数,正好是密钥的长度值除以 8(即:KeySize / 8)。

 

公钥分段加密

/**
     * 用公钥对字符串进行分段加密
     *
     */
    public static byte[] encryptByPublicKeyForSpilt(byte[] data, byte[] publicKey) throws Exception {
        int dataLen = data.length;
        if (dataLen <= DEFAULT_BUFFERSIZE) {
            return encryptByPublicKey(data, publicKey);
        }
        List<Byte> allBytes = new ArrayList<Byte>(2048);
        int bufIndex = 0;
        int subDataLoop = 0;
        byte[] buf = new byte[DEFAULT_BUFFERSIZE];
        for (int i = 0; i < dataLen; i++) {
            buf[bufIndex] = data[i];
            if (++bufIndex == DEFAULT_BUFFERSIZE || i == dataLen - 1) {
                subDataLoop++;
                if (subDataLoop != 1) {
                    for (byte b : DEFAULT_SPLIT) {
                        allBytes.add(b);
                    }
                }
                byte[] encryptBytes = encryptByPublicKey(buf, publicKey);
                for (byte b : encryptBytes) {
                    allBytes.add(b);
                }
                bufIndex = 0;
                if (i == dataLen - 1) {
                    buf = null;
                } else {
                    buf = new byte[Math.min(DEFAULT_BUFFERSIZE, dataLen - i - 1)];
                }
            }
        }
        byte[] bytes = new byte[allBytes.size()];
        {
            int i = 0;
            for (Byte b : allBytes) {
                bytes[i++] = b.byteValue();
            }
        }
        return bytes;
    }

私钥分段加密

  /**
     * 分段加密
     *
     * @param data       要加密的原始数据
     * @param privateKey 秘钥
     */
    public static byte[] encryptByPrivateKeyForSpilt(byte[] data, byte[] privateKey) throws Exception {
        int dataLen = data.length;
        if (dataLen <= DEFAULT_BUFFERSIZE) {
            return encryptByPrivateKey(data, privateKey);
        }
        List<Byte> allBytes = new ArrayList<Byte>(2048);
        int bufIndex = 0;
        int subDataLoop = 0;
        byte[] buf = new byte[DEFAULT_BUFFERSIZE];
        for (int i = 0; i < dataLen; i++) {
            buf[bufIndex] = data[i];
            if (++bufIndex == DEFAULT_BUFFERSIZE || i == dataLen - 1) {
                subDataLoop++;
                if (subDataLoop != 1) {
                    for (byte b : DEFAULT_SPLIT) {
                        allBytes.add(b);
                    }
                }
                byte[] encryptBytes = encryptByPrivateKey(buf, privateKey);
                for (byte b : encryptBytes) {
                    allBytes.add(b);
                }
                bufIndex = 0;
                if (i == dataLen - 1) {
                    buf = null;
                } else {
                    buf = new byte[Math.min(DEFAULT_BUFFERSIZE, dataLen - i - 1)];
                }
            }
        }
        byte[] bytes = new byte[allBytes.size()];
        {
            int i = 0;
            for (Byte b : allBytes) {
                bytes[i++] = b.byteValue();
            }
        }
        return bytes;
    }

公钥分段解密

 /**
     * 公钥分段解密
     *
     * @param encrypted 待解密数据
     * @param publicKey 密钥
     */
    public static byte[] decryptByPublicKeyForSpilt(byte[] encrypted, byte[] publicKey) throws Exception {
        int splitLen = DEFAULT_SPLIT.length;
        if (splitLen <= 0) {
            return decryptByPublicKey(encrypted, publicKey);
        }
        int dataLen = encrypted.length;
        List<Byte> allBytes = new ArrayList<Byte>(1024);
        int latestStartIndex = 0;
        for (int i = 0; i < dataLen; i++) {
            byte bt = encrypted[i];
            boolean isMatchSplit = false;
            if (i == dataLen - 1) {
                // 到data的最后了
                byte[] part = new byte[dataLen - latestStartIndex];
                System.arraycopy(encrypted, latestStartIndex, part, 0, part.length);
                byte[] decryptPart = decryptByPublicKey(part, publicKey);
                for (byte b : decryptPart) {
                    allBytes.add(b);
                }
                latestStartIndex = i + splitLen;
                i = latestStartIndex - 1;
            } else if (bt == DEFAULT_SPLIT[0]) {
                // 这个是以split[0]开头
                if (splitLen > 1) {
                    if (i + splitLen < dataLen) {
                        // 没有超出data的范围
                        for (int j = 1; j < splitLen; j++) {
                            if (DEFAULT_SPLIT[j] != encrypted[i + j]) {
                                break;
                            }
                            if (j == splitLen - 1) {
                                // 验证到split的最后一位,都没有break,则表明已经确认是split段
                                isMatchSplit = true;
                            }
                        }
                    }
                } else {
                    // split只有一位,则已经匹配了
                    isMatchSplit = true;
                }
            }
            if (isMatchSplit) {
                byte[] part = new byte[i - latestStartIndex];
                System.arraycopy(encrypted, latestStartIndex, part, 0, part.length);
                byte[] decryptPart = decryptByPublicKey(part, publicKey);
                for (byte b : decryptPart) {
                    allBytes.add(b);
                }
                latestStartIndex = i + splitLen;
                i = latestStartIndex - 1;
            }
        }
        byte[] bytes = new byte[allBytes.size()];
        {
            int i = 0;
            for (Byte b : allBytes) {
                bytes[i++] = b.byteValue();
            }
        }
        return bytes;
    }

私钥分段解密

  /**
     * 使用私钥分段解密
     *
     */
    public static byte[] decryptByPrivateKeyForSpilt(byte[] encrypted, byte[] privateKey) throws Exception {
        int splitLen = DEFAULT_SPLIT.length;
        if (splitLen <= 0) {
            return decryptByPrivateKey(encrypted, privateKey);
        }
        int dataLen = encrypted.length;
        List<Byte> allBytes = new ArrayList<Byte>(1024);
        int latestStartIndex = 0;
        for (int i = 0; i < dataLen; i++) {
            byte bt = encrypted[i];
            boolean isMatchSplit = false;
            if (i == dataLen - 1) {
                // 到data的最后了
                byte[] part = new byte[dataLen - latestStartIndex];
                System.arraycopy(encrypted, latestStartIndex, part, 0, part.length);
                byte[] decryptPart = decryptByPrivateKey(part, privateKey);
                for (byte b : decryptPart) {
                    allBytes.add(b);
                }
                latestStartIndex = i + splitLen;
                i = latestStartIndex - 1;
            } else if (bt == DEFAULT_SPLIT[0]) {
                // 这个是以split[0]开头
                if (splitLen > 1) {
                    if (i + splitLen < dataLen) {
                        // 没有超出data的范围
                        for (int j = 1; j < splitLen; j++) {
                            if (DEFAULT_SPLIT[j] != encrypted[i + j]) {
                                break;
                            }
                            if (j == splitLen - 1) {
                                // 验证到split的最后一位,都没有break,则表明已经确认是split段
                                isMatchSplit = true;
                            }
                        }
                    }
                } else {
                    // split只有一位,则已经匹配了
                    isMatchSplit = true;
                }
            }
            if (isMatchSplit) {
                byte[] part = new byte[i - latestStartIndex];
                System.arraycopy(encrypted, latestStartIndex, part, 0, part.length);
                byte[] decryptPart = decryptByPrivateKey(part, privateKey);
                for (byte b : decryptPart) {
                    allBytes.add(b);
                }
                latestStartIndex = i + splitLen;
                i = latestStartIndex - 1;
            }
        }
        byte[] bytes = new byte[allBytes.size()];
        {
            int i = 0;
            for (Byte b : allBytes) {
                bytes[i++] = b.byteValue();
            }
        }
        return bytes;
    }

这样总算把遇见的问题解决了,项目中使用的方案是客户端公钥加密,服务器私钥解密,服务器开发人员说是出于效率考虑,所以还是自己写了个程序测试一下真正的效率

第一步:准备100条对象数据

        List<Person> personList=new ArrayList<>();
        int testMaxCount=100;//测试的最大数据条数
        //添加测试数据
        for(int i=0;i<testMaxCount;i++){
            Person person =new Person();
            person.setAge(i);
            person.setName(String.valueOf(i));
            personList.add(person);
        }
        //FastJson生成json数据

        String jsonData=JsonUtils.objectToJsonForFastJson(personList);

        Log.e("MainActivity","加密前json数据 ---->"+jsonData);
        Log.e("MainActivity","加密前json数据长度 ---->"+jsonData.length());

 

第二步生成秘钥对

        KeyPair keyPair=RSAUtils.generateRSAKeyPair(RSAUtils.DEFAULT_KEY_SIZE);
        // 公钥
        RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic();
        // 私钥
        RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate();

接下来分别使用公钥加密 私钥解密   私钥加密 公钥解密

        //公钥加密
        long start=System.currentTimeMillis();
        byte[] encryptBytes=    RSAUtils.encryptByPublicKeyForSpilt(jsonData.getBytes(),publicKey.getEncoded());
        long end=System.currentTimeMillis();
        Log.e("MainActivity","公钥加密耗时 cost time---->"+(end-start));
        String encryStr=Base64Encoder.encode(encryptBytes);
        Log.e("MainActivity","加密后json数据 --1-->"+encryStr);
        Log.e("MainActivity","加密后json数据长度 --1-->"+encryStr.length());
        //私钥解密
        start=System.currentTimeMillis();
        byte[] decryptBytes=  RSAUtils.decryptByPrivateKeyForSpilt(Base64Decoder.decodeToBytes(encryStr),privateKey.getEncoded());
        String decryStr=new String(decryptBytes);
        end=System.currentTimeMillis();
        Log.e("MainActivity","私钥解密耗时 cost time---->"+(end-start));
        Log.e("MainActivity","解密后json数据 --1-->"+decryStr);

        //私钥加密
        start=System.currentTimeMillis();
        encryptBytes=    RSAUtils.encryptByPrivateKeyForSpilt(jsonData.getBytes(),privateKey.getEncoded());
        end=System.currentTimeMillis();
        Log.e("MainActivity","私钥加密密耗时 cost time---->"+(end-start));
        encryStr=Base64Encoder.encode(encryptBytes);
        Log.e("MainActivity","加密后json数据 --2-->"+encryStr);
        Log.e("MainActivity","加密后json数据长度 --2-->"+encryStr.length());
        //公钥解密
        start=System.currentTimeMillis();
        decryptBytes=  RSAUtils.decryptByPublicKeyForSpilt(Base64Decoder.decodeToBytes(encryStr),publicKey.getEncoded());
        decryStr=new String(decryptBytes);
        end=System.currentTimeMillis();
        Log.e("MainActivity","公钥解密耗时 cost time---->"+(end-start));
        Log.e("MainActivity","解密后json数据 --2-->"+decryStr);

运行结果:

对比发现:私钥的加解密都很耗时,所以可以根据不同的需求采用不能方案来进行加解密。个人觉得服务器要求解密效率高,客户端私钥加密,服务器公钥解密比较好一点

 

加密后数据大小的变化:数据量差不多是加密前的1.5倍

posted on 2016-05-08 11:22  总李写代码  阅读(44384)  评论(6编辑  收藏  举报