Fork me on GitHub

UESTC 923 稳住GCD DP + GCD

定义:dp[i][j] 表示 在前i个数中,使整个gcd值为j时最少取的数个数。

则有方程: gg = gcd(a[i],j) 

gg == j : 添加这个数gcd不变,不添加,  dp[i][j] = dp[i-1][j]

gg != j: t添加,更新答案,                dp[i][gg] = dp[i-1][j] + 1

最后答案为dp[n][g] (g为原始的所有数的gcd)

时间复杂度: O(n*max(a[i]))

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 1000007

int dp[703][10004];
int a[704];

int gcd(int a,int b)
{
    if(!b)
        return a;
    return gcd(b,a%b);
}

int main()
{
    int n,g,i,j;
    scanf("%d",&n);
    g = 0;
    int maxi = 1;
    for(i=1;i<=n;i++)
        for(j=0;j<=10004;j++)
            dp[i][j] = Mod;
    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        g = gcd(g,a[i]);
        maxi = max(maxi,a[i]);
        dp[i][a[i]] = 1;
    }
    //printf("%d\n",g);
    for(i=2;i<=n;i++)
    {
        for(j=0;j<=maxi;j++)
        {
            if(dp[i-1][j] != Mod)
            {
                int gg = gcd(a[i],j);
                if(gg == j)
                    dp[i][gg] = min(dp[i][gg],dp[i-1][j]);
                else
                    dp[i][gg] = min(dp[i][gg],dp[i-1][j] + 1);
            }
        }
    }
    printf("%d\n",n-dp[n][g]);
    return 0;
}
View Code

 

posted @ 2014-06-29 01:47  whatbeg  阅读(378)  评论(2编辑  收藏  举报