HDU 1874 畅通工程续(模板题——Floyd算法)
题目:
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
题意描述:
输入城镇数N和道路数M(0<N<200,0<M<1000)以及道路信息
计算并输出最短路,如不存在输出“-1”
解题思路:
最短路模板题,处理数据使用Floyd算法即可。
代码实现:
1 #include<stdio.h> 2 int main() 3 { 4 int n,m,e[210][210],inf=99999999,t1,t2,t3,s,t,i,j,k; 5 while(scanf("%d%d",&n,&m) != EOF) 6 { 7 for(i=0;i<n;i++) 8 { 9 for(j=0;j<n;j++) 10 { 11 if(i==j) 12 e[i][j]=0; 13 else 14 e[i][j]=inf; 15 } 16 } 17 for(i=1;i<=m;i++) 18 { 19 scanf("%d%d%d",&t1,&t2,&t3); 20 if(e[t1][t2] > t3)//道路可能存在重复,去最小值即可 21 e[t1][t2]=e[t2][t1]=t3; 22 } 23 scanf("%d%d",&s,&t); 24 25 for(k=0;k<n;k++) 26 for(i=0;i<n;i++) 27 for(j=0;j<n;j++) 28 if(e[i][j] > e[i][k]+e[k][j]) 29 e[i][j]=e[i][k]+e[k][j]; 30 if(e[s][t]==inf) 31 printf("-1\n"); 32 else 33 printf("%d\n",e[s][t]); 34 } 35 return 0; 36 }
易错分析:
1、坑还是有的,数据可能存在道路重复,但我们只需取最短即可
欢迎交流,共同进步——