《Linux内核设计与实现》读书笔记(五)- 系统调用

主要内容:

  1. 什么是系统调用
  2. Linux上的系统调用实现原理
  3. 一个简单的系统调用的实现

1. 什么是系统调用

简单来说,系统调用就是用户程序和硬件设备之间的桥梁。

用户程序在需要的时候,通过系统调用来使用硬件设备。

系统调用的存在,有以下重要的意义:

1)用户程序通过系统调用来使用硬件,而不用关心具体的硬件设备,这样大大简化了用户程序的开发。

    比如:用户程序通过write()系统调用就可以将数据写入文件,而不必关心文件是在磁盘上还是软盘上,或者其他存储上。

2)系统调用使得用户程序有更好的可移植性。

    只要操作系统提供的系统调用接口相同,用户程序就可在不用修改的情况下,从一个系统迁移到另一个操作系统。

3)系统调用使得内核能更好的管理用户程序,增强了系统的稳定性。

    因为系统调用是内核实现的,内核通过系统调用来控制开放什么功能及什么权限给用户程序。

    这样可以避免用户程序不正确的使用硬件设备,从而破坏了其他程序。

4)系统调用有效的分离了用户程序和内核的开发。

    用户程序只需关心系统调用API,通过这些API来开发自己的应用,不用关心API的具体实现。

    内核则只要关心系统调用API的实现,而不必管它们是被如何调用的。

 

用户程序,系统调用,内核,硬件设备的调用关系如下图:

image

 

2. Linux上的系统调用实现原理

要想实现系统调用,主要实现以下几个方面:

  1. 通知内核调用一个哪个系统调用
  2. 用户程序把系统调用的参数传递给内核
  3. 用户程序获取内核返回的系统调用返回值

下面看看Linux是如何实现上面3个功能的。

2.1 通知内核调用一个哪个系统调用

每个系统调用都有一个系统调用号,系统调用发生时,内核就是根据传入的系统调用号来知道是哪个系统调用的。

在x86架构中,用户空间将系统调用号是放在eax中的,系统调用处理程序通过eax取得系统调用号。

系统调用号定义在内核代码:arch/alpha/include/asm/unistd.h 中,可以看出linux的系统调用不是很多。

2.2 用户程序把系统调用的参数传递给内核

系统调用的参数也是通过寄存器传给内核的,在x86系统上,系统调用的前5个参数放在ebx,ecx,edx,esi和edi中,如果参数多的话,还需要用个单独的寄存器存放指向所有参数在用户空间地址的指针。

一般的系统调用都是通过C库(最常用的是glibc库)来访问的,Linux内核提供一个从用户程序直接访问系统调用的方法。

参见内核代码:arch/cris/include/arch-v10/arch/unistd.h

里面定义了6个宏,分别可以调用参数个数为0~6的系统调用

_syscall0(type,name)
_syscall1(type,name,type1,arg1)
_syscall2(type,name,type1,arg1,type2,arg2)
_syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)
_syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)
_syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5)
_syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5,type6,arg6)

超过6个参数的系统调用很罕见,所以这里只定义了6个。

2.3 用户程序获取内核返回的系统调用返回值

获取系统调用的返回值也是通过寄存器,在x86系统上,返回值放在eax中。

 

3. 一个简单的系统调用的实现

了解了Linux上系统调用的原理,下面就可以自己来实现一个简单的系统调用。

3.1 环境准备

为了不破坏现有系统,我是用虚拟机来实验的。

主机:fedora16 x86_64系统 + kvm(一种虚拟技术,就像virtualbox,vmware等)

虚拟机: 也是安装fedora16 x86_64系统(通过virt-manager很容易安装一个系统)

 

下载内核源码:www.kernel.org  下载最新的就行

 

3.2 修改内核源码中的相应文件

主要修改以下文件:

arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/syscall_table_32.S
include/asm-generic/unistd.h
include/linux/syscalls.h
kernel/sys.c

我在sys.c中追加了2个函数:sys_foo和sys_bar

如果是在x86_64的内核中增加一个系统调用,只需修改 arch/x86/include/asm/unistd_64.h,比如sys_bar。

修改内容参见下面的diff文件:

diff -r new/arch/x86/ia32/ia32entry.S old/arch/x86/ia32/ia32entry.S
855d854
<     .quad sys_foo
diff -r new/arch/x86/include/asm/unistd_32.h old/arch/x86/include/asm/unistd_32.h
357d356
< #define __NR_foo    349
361c360
< #define NR_syscalls 350
---
> #define NR_syscalls 349
diff -r new/arch/x86/include/asm/unistd_64.h old/arch/x86/include/asm/unistd_64.h
689,692d688
< #define __NR_foo            312
< __SYSCALL(__NR_foo, sys_foo)
< #define __NR_bar            313
< __SYSCALL(__NR_bar, sys_bar)
diff -r new/arch/x86/kernel/syscall_table_32.S old/arch/x86/kernel/syscall_table_32.S
351d350
<     .long sys_foo
diff -r new/include/asm-generic/unistd.h old/include/asm-generic/unistd.h
694,695d693
< #define __NR_foo 272
< __SYSCALL(__NR_foo, sys_foo)
698c696
< #define __NR_syscalls 273
---
> #define __NR_syscalls 272
diff -r new/kernel/sys.c old/kernel/sys.c
1920,1928d1919
< 
< asmlinkage long sys_foo(void)
< {
<     return 1112223334444555;
< }
< asmlinkage long sys_bar(void)
< {
<     return 1234567890;
< }

 

3.3 编译内核

#cd linux-3.2.28
#make menuconfig  (选择要编译参数,如果不熟悉内核编译,用默认选项即可)
#make all  (这一步真的时间很长......)
#make modules_install
#make install  (这一步会把新的内核加到启动项中)
#reboot  (重启系统进入新的内核)

 

3.4 编写调用的系统调用的代码

#include <unistd.h>
#include <sys/syscall.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>


#define __NR_foo 312
#define __NR_bar 313

int main()
{
        printf ("result foo is %ld\n", syscall(__NR_foo));
        printf("%s\n", strerror(errno));
        printf ("result bar is %ld\n", syscall(__NR_bar));
        printf("%s\n", strerror(errno));
        return 0;
}

编译运行上面的代码:

#gcc test.c -o test
#./test

运行结果如下:

result foo is 1112223334444555
Success
result bar is 1234567890
Success
posted @ 2012-09-17 09:58  wang_yb  阅读(12947)  评论(0编辑  收藏  举报