#include "stdafx.h"

#define STACK_MAX_SIZE 30
#define QUEUE_MAX_SIZE 30
#ifndef elemType
typedef char elemType;
#endif

/************************************************************************/
/*
以下是关于二叉树操作的11个简单算法 */
/************************************************************************/ 
struct BTreeNode{
    elemType data;
    BTreeNode *left;
    BTreeNode *right;
};

/* 1.
初始化二叉树 */
void initBTree(BTreeNode* *bt)
{
    *bt = NULL;
    return;
}

//
建立二叉树(根据a所指向的二叉树广义表字符串建立)
void createBTree(BTreeNode* *bt, char *a)
{
    BTreeNode *p;
    //
定义s数组为存储根结点指针的栈使用
    BTreeNode *s[STACK_MAX_SIZE];
    //
定义top作为s栈的栈顶指针,初值为-1,表示空栈
    int top = -1;
    //
k作为处理结点的左子树和右子树,k = 1处理左子树,k = 2处理右子树
    int k;
    //
i扫描数组a中存储的二叉树广义表字符串,初值为0
    int i = 0;
    //
把树根指针置为空,即从空树开始建立二叉树
    *bt = NULL;
    //
每循环一次处理一个字符,直到扫描到字符串结束符\0为止
    while(a[i] != '\0')
    {
        switch(a[i])
        {
        case ' ':
            break; /*
对空格不作任何处理 */
        case '(':
            if(top == STACK_MAX_SIZE - 1)
            {
                printf("
栈空间太小!\n");
                exit(1);
            }
            top++;
            s[top] = p;
            k = 1;
            break;
        case ')':
            if(top == -1)
            {
                printf("
二叉树广义表字符串错误!\n");
                exit(1);
            }
            top--;
            break;
        case ',':
            k = 2;
            break;
        default:
            p = new BTreeNode;
            p->data = a[i];
            p->left = p->right = NULL;
            if(*bt == NULL)
            {
                *bt = p;
            }
            else
            {
                if( k == 1)
                {
                    s[top]->left = p;
                }else{
                    s[top]->right = p;
                }
            }
        }
    //
为扫描下一个字符修改i
    i++;
    }
    return;
}

//
检查二叉树是否为空,为空则返回1,否则返回0
int emptyBTree(BTreeNode *bt)
{
    if(bt == NULL)
    {
        return 1;
    }
    else
    {
        return 0;
    }
}

//
求二叉树深度
int BTreeDepth(BTreeNode *bt)
{
    if(bt == NULL)
    {
        //
对于空树,返回0结束递归
        return 0;
    }
    else
    {
        //
计算左子树的深度
        int dep1 = BTreeDepth(bt->left);
        //
计算右子树的深度
        int dep2 = BTreeDepth(bt->right);
        if(dep1 > dep2)
        {
            return dep1 + 1;
        }
        else
        {
            return dep2 + 1;
        }
    }
}

//
从二叉树中查找值为x的结点,若存在则返回元素存储位置,否则返回空值
elemType *findBTree(BTreeNode *bt, elemType x)
{
    if(bt == NULL)
    {
        return NULL;
    }
    else
    {
        if(bt->data == x)
        {
            return &(bt->data);
        }
        else
        {
            //
分别向左右子树递归查找
            elemType *p;
            if(p = findBTree(bt->left, x))
            {
                return p;
            }
            if(p = findBTree(bt->right, x))
            {
                return p;
            }
            return NULL;
        }
    }
}

//
弟归遍历输出二叉树(前序遍历)
void printBTree(BTreeNode *bt)
{
    //
树为空时结束递归,否则执行如下操作
    if(bt != NULL)
    {
        //
根左右
        printf("%c, ", bt->data);
        printBTree(bt->left);
        printBTree(bt->right);
    }
    return;
}

//
清除二叉树,使之变为一棵空树
void clearBTree(BTreeNode* *bt)
{
    if(*bt != NULL)
    {
        clearBTree(&((*bt)->left));
        clearBTree(&((*bt)->right));
        free(*bt);
        *bt = NULL;
    }
    return;
}

//
前序遍历
void preOrder(BTreeNode *bt)
{
    if(bt != NULL)
    {
        //
根左右
        printf("%c ", bt->data);
        preOrder(bt->left);
        preOrder(bt->right);
    }
    return;
}

//
中序遍历
void inOrder(BTreeNode *bt)
{
    if(bt != NULL)
    {
        //
左根右
        inOrder(bt->left);
        printf("%c ", bt->data);
        inOrder(bt->right);
    }
    return;
}

//
后序遍历
void postOrder(BTreeNode *bt)
{
    if(bt != NULL)
    {
        //
左右根
        postOrder(bt->left);
        postOrder(bt->right);
        printf("%c ", bt->data);
    }
    return;
}

//
按层遍历
void levelOrder(BTreeNode *bt)
{
    BTreeNode *p;
    BTreeNode *q[QUEUE_MAX_SIZE];
    int front = 0, rear = 0;
    //
将树根指针进队
    if(bt != NULL)
    {
        rear = (rear + 1) % QUEUE_MAX_SIZE;
        q[rear] = bt;
    }
    //
队列非空
    while(front != rear)
    {  
        //
使队首指针指向队首元素
        front = (front + 1) % QUEUE_MAX_SIZE;
        p = q[front];
        printf("%c ", p->data);
        //
若结点存在左孩子,则左孩子结点指针进队
        if(p->left != NULL)
        {
            rear = (rear + 1) % QUEUE_MAX_SIZE;
            q[rear] = p->left;
        }
        //
若结点存在右孩子,则右孩子结点指针进队
        if(p->right != NULL)
        {
            rear = (rear + 1) % QUEUE_MAX_SIZE;
            q[rear] = p->right;
        }
    }
    return;
}

/************************************************************************/
/*
以下是关于二叉搜索树操作的4个简单算法 */
/************************************************************************/

//
查找 递归算法
elemType *findBSTree1(BTreeNode *bst, elemType x)
{
    /*
树为空则返回NULL */
    if (bst == NULL)
    {
        return NULL;
    }
    else
    {
        if (x == bst->data)
        {
            return &(bst->data);
        }
        else
        {
            if (x < bst->data)
            {   //
向左子树查找并直接返回
                return findBSTree1(bst->left, x);
            }
            else
            {   //
向右子树查找并直接返回
                return findBSTree1(bst->right, x);
            }
        }
    }
}

//
查找 非递归算法
elemType *findBSTree2(BTreeNode *bst, elemType x)
{
    while (bst != NULL)
    {
        if (x == bst->data)
        {
            return &(bst->data);
        }
        else if (x < bst->data)
        {
            bst = bst->left;
        }
        else
        {
            bst = bst->right;
        }
    }
    return NULL;
}

//
插入 递归算法
void insertBSTree1(BTreeNode* *bst, elemType x)
{
    //
新建一个根结点
    if (*bst == NULL)
    {
        BTreeNode *p = new BTreeNode;
        p->data = x;
        p->left = p->right = NULL;
        *bst = p;
        return;
    }
    else if (x < (*bst)->data)
    {   //
向左子树完成插入运算
        insertBSTree1(&((*bst)->left), x);
    }
    else
    {   //
向右子树完成插入运算
        insertBSTree1(&((*bst)->right), x);
    }
}

//
插入  非递归算法
void insertBSTree2(BTreeNode* *bst, elemType x)
{
    BTreeNode *p;
    BTreeNode *t = *bst, *parent = NULL;
    //
为待插入的元素查找插入位置
    while (t != NULL)
    {
        parent = t;
        if (x < t->data)
        {
            t = t->left;
        }
        else
        {
            t = t->right;
        }
    }
    //
建立值为x,左右指针域为空的新结点
    p = new BTreeNode;
    p->data = x;
    p->left = p->right = NULL;
    //
将新结点链接到指针为空的位置
    if (parent == NULL)
    {
        //
作为根结点插入
        *bst = p;
    }
    else if (x < parent->data)
    {   //
链接到左指针域
        parent->left = p;
    }else
    {
        parent->right = p;
    }
    return;
}

//
创建二叉树
void createBSTree(BTreeNode* *bst, elemType a[], int n)
{
    int i;
    *bst = NULL;
    for (i = 0; i < n; i++){
        insertBSTree1(bst, a[i]);
    }
    return;
}

//
删除值为x的结点,成功返回1,失败返回0
int deleteBSTree(BTreeNode* *bst, elemType x)
{
    BTreeNode *temp = *bst;
    if (*bst == NULL)
    {
        return 0;
    }
    if (x < (*bst)->data)
    {
        //
向左子树递归
        return deleteBSTree(&((*bst)->left), x);
    }
    if (x > (*bst)->data)
    {
        //
向右子树递归
        return deleteBSTree(&((*bst)->right), x);
    }
    //
待删除的元素等于树根结点值且左子树为空,将右子树作为整个树并返回1
    if ((*bst)->left == NULL)
    {
        *bst = (*bst)->right;
        free(temp);
        return 1;
    }
    //
待删除的元素等于树根结点值且右子树为空,将左子树作为整个树并返回1
    if ((*bst)->right == NULL)
    {
        *bst = (*bst)->left;
        free(temp);
        return 1;
    }
    else
    {
        //
中序前驱结点为空时,把左孩子结点值赋给树根结点,然后从左子树中删除根结点
        if ((*bst)->left->right == NULL)
        {
            (*bst)->data = (*bst)->left->data;
            return deleteBSTree(&((*bst)->left), (*bst)->data);
        }
        else
        {   //
定位到中序前驱结点,把该结点值赋给树根结点,然后从以中序前驱结点为根的树上删除根结点
            BTreeNode *p1 = *bst, *p2 = p1->left;
            while (p2->right != NULL)
            {
                p1 = p2;
                p2 = p2->right;
            }
            (*bst)->data = p2->data;
            return deleteBSTree(&(p1->right), p2->data);
        }
    }
}

int main(int argc, char *argv[])
{
    elemType x, *px;
    elemType a[10] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'};
    BTreeNode *bst = NULL;
    createBSTree(&bst, a, 10);
    printf("
建立的二叉搜索树的广义表形式为:\r\n");

    std::cout << "\r\n
前序遍历:\r\n";
    printBTree(bst);

    printf("\r\n\r\n
中序遍历:\r\n");
    inOrder(bst);

    printf("\r\n\r\n
输入待查找元素的值:");
    std::cin >> x;
    if (px = findBSTree1(bst, x))
    {
        printf("
查找成功!得到的x为:%d\r\n", *px);
    }
    else
    {
        printf("
查找失败\r\n");
    }

    printf("
输入待插入的元素值:");
    std::cin >> x;
    insertBSTree1(&bst, x);

    printf("
输入待删除元素值:");
    std::cin >> x;
    if (deleteBSTree(&bst, x)){
        printf("1 ");
    }else{
        printf("0 ");
    }
    printf("\r\n\r\n
进行相应操作后的中序遍历为:\r\n");
    inOrder(bst);

    printf("\r\n\r\n
操作后的二叉搜索树的广义表的形式为:\r\n");
    printBTree(bst);

    printf("\r\n");

    clearBTree(&bst);
    system("pause");
    return 0;
}

posted on 2011-11-01 12:24  o无尘o  阅读(2118)  评论(0编辑  收藏  举报