高精度计算练习2

高精度运算_乘法

AYYZOJ p1445

 1 program p1445;
 2 const
 3   max=5000;
 4 var
 5  a,b,c:array[1..max] of word;
 6  n1,n2:string;
 7  lena,lenb,lenc,i,j,x:integer;
 8 begin
 9  readln(n1);
10  readln(n2);
11  lena:=length(n1); lenb:=length(n2);
12  for i:=1 to lena do a[lena-i+1]:=ord(n1[i])-ord('0');
13  for i:=1 to lenb do b[lenb-i+1]:=ord(n2[i])-ord('0');
14  for i:=1 to lena do
15  begin
16   x:=0;
17   for j:=1 to lenb do
18   begin
19    C[i+j-1]:= A[i]*B[j]+ x + C[i+j-1];
20    x:= C[i+j-1] div 10;
21    C[i+j-1]:= C[i+j-1] mod 10
22   end;
23   c[i+j]:= x;
24  end;
25  lenc:=i+j;
26  while (c[lenc]=0) and (lenc>1) do dec(lenc);
27  for i:=lenc downto 1 do write(c[i]);
28 end.
高精度乘法

高精度运算_A/B问题1

AYYZOJ p1446

 1 program p1446;
 2 const e=20;
 3 var
 4  a,d,x:array[0..e] of integer;
 5  n,m,t:integer;
 6 begin
 7  read(n,m);
 8  write(n,'/',m,'=');
 9  a[0]:=n; d[0]:=n div m;
10  x[0]:=n mod m;
11  write(d[0],'.');
12   for t:=1 to e do
13   begin
14    //if x[t-1]=0 then exit; {去掉也能A}
15    a[t]:=x[t-1]*10;
16    d[t]:=a[t] div m;
17    write(d[t]);
18    x[t]:=a[t] mod m;
19   end;
20 end.
View Code

高精度运算_A/B问题2

AYYZOJ p1447

 1 const max=200;dot=100;
 2 var a,c:array[0..max] of byte;
 3    x,n2:longint; n1:string;
 4    lena:integer; code,i,j:integer;
 5 begin
 6   readln(n1);
 7   readln(n2);
 8   lena:=length(n1);
 9   for i:=1 to lena do a[i] := ord(n1[i]) - ord('0');
10   x:=0;
11   for i:=1 to lena do begin
12     c[i]:=(x*10+a[i]) div n2;
13     x:=(x*10+a[i]) mod n2;
14   end;
15   j:=1;
16   while (c[j]=0) and (j<lena) do inc(j);
17   if j<>1 then
18   for i:=j to lena do begin c[i-j+1]:=c[i];c[i]:=0;end;
19   c[0]:=lena-j+1;
20   if x=0 then begin
21     for i:=1 to c[0] do write(c[i]);
22     writeln;halt;
23   end;
24   j:=c[0]+dot;
25   for i:=1 to dot do begin
26     c[c[0]+i]:=x*10 div n2;
27     x:=x*10 mod n2;
28     if x=0 then begin j:=c[0]+i;break;end;
29   end;
30   for i:=1 to j do
31     if i=c[0] then write(c[i],'.')
32      else write(c[i]);
33   writeln
34 end.
View Code

高精度运算_3的n次幂
AYYZOJ p1450

思路:高精度数乘单精度数

 1 program p1450;
 2 var
 3   a:array[1..500] of byte;
 4   i,j,c,n,l:integer;
 5 begin
 6   readln(n);
 7   a[1]:=1;l:=1;
 8   for i:=1 to n do
 9     begin
10       c:=0;
11       for j:=1 to l do
12         begin
13           a[j]:=a[j]*3+c;
14           c:=a[j] div 10;
15           a[j]:=a[j] mod 10;
16         end;
17       if c>0 then begin inc(l);a[l]:=c;end;
18     end;
19   for i:=l downto 1 do write(a[i]);
20   writeln;
21 end.
View Code

高精度运算_求s=1+2+...+n

AYYZOJ p1451

 1 var
 2   n:longint;
 3   a,b,c:array[1..100] of integer;
 4   la,lb,lc,k,i,j:integer;
 5 procedure mul(x,y:longint);
 6   begin
 7     la:=0;
 8     while x>0 do
 9       begin
10         inc(la);
11         a[la]:=x mod 10;
12         x:=x div 10;
13       end;
14     lb:=0;
15     while y>0 do
16       begin
17         inc(lb);
18         b[lb]:=y mod 10;
19         y:=y div 10;
20       end;
21     for i:=1 to la do
22       begin
23         k:=0;
24         for j:=1 to lb do
25           begin
26             c[i+j-1]:=a[i]*b[j]+k+c[i+j-1];
27             k:=c[i+j-1] div 10;
28             c[i+j-1]:=c[i+j-1] mod 10;
29           end;
30         c[i+j]:=k;
31       end;
32     lc:=i+j;
33     while(c[lc]=0) and (lc>1) do dec(lc);
34     for i:=lc downto 1 do write(c[i]);writeln;
35   end;
36 begin
37   readln(n);
38   if n mod 2=0 then mul(n div 2,n+1)  {等差数列求和公式}
39   else mul(n,(n+1) div 2);
40 end.
View Code

高精度运算_求n的阶乘

优化方法
AYYZOJ p1452

 1 const maxn=3001;maxm=10000;
 2 type arr=array[1..maxm] of integer;
 3 var
 4   ans:arr;
 5   p,num:array[1..maxn] of integer;
 6   n,i,j,k:longint;
 7   flag:boolean;la:integer;
 8 procedure add(x:longint);
 9   var i:longint;
10   begin
11     i:=1;
12     while p[i]<=x do begin
13       while (x mod p[i]=0) do
14         begin
15           inc(num[i],1);
16           x:=x div p[i];
17         end;
18       inc(i);
19     end;
20   end;
21 procedure mul(var a:arr;c:longint;var la:integer);
22   var i:longint;
23   begin
24     a[1]:=a[1]*c;
25     for i:=2 to la do
26       begin
27         a[i]:=a[i]*c;
28         a[i]:=a[i]+a[i-1] div 10;
29         a[i-1]:=a[i-1] mod 10;
30       end;
31     while a[la]>=10 do
32       begin
33         inc(la);
34         a[la]:=a[la-1] div 10;
35         a[la-1]:=a[la-1] mod 10;
36       end;
37   end;
38 begin
39   p[1]:=2;k:=1;
40   for i:=3 to maxn do begin
41     flag:=false;
42     for j:=2 to trunc(sqrt(i)) do
43       if i mod j=0 then begin flag:=true;break;end;
44     if not flag then begin inc(k);p[k]:=i;end;
45   end;
46   fillchar(ans,sizeof(ans),0);
47   fillchar(num,sizeof(num),0);
48   readln(n);
49   for i:=2 to n do add(i);
50   ans[1]:=1; la:=1;
51   for i:=1 to maxn do
52     if p[i]>n then break else for j:=1 to num[i] do mul(ans,p[i],la);
53   for i:=la downto 1 do write(ans[i]);writeln;
54 end.
质因子表法
1 可以初始化定义常量数组P为10000以内整数的质因子表
2 const p:array[1..1229] of integer=(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,4019,4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,5039,5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997,7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,7963,7993,8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,8933,8941,8951,8963,8969,8971,8999,9001,9007,9011,9013,9029,9041,9043,9049,9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973);
质因子表

N!

 1 const m=10000000;
 2 var a:array[1..m] of integer;
 3     f:real;
 4     y,c,i,j,n,k,l,t:longint;
 5     st1,st2:string;
 6 begin
 7   write('input a number n:');
 8   read(n);
 9  // for i:=1 to n do
10  // f:=f+ln(i)/ln(10);
11  // t:=trunc(f)+1;            {计算可能需要的位数}
12   a[1]:=1;l:=1;k:=1;
13   for i:=1 to n do
14    begin
15     c:=0;
16     while a[k]=0 do k:=k+1;
17     for j:=k to l do
18      begin
19       y:=a[j]*i+c;            {该位上的数乘以I加上低位的进位}
20       c:=y div 10000;            {每四位数占用1个数组单元,c是进位}
21       a[j]:=y mod 10000
22      end;
23     if c>0 then begin
24               l:=l+1;
25               a[l]:=c;            {若有进位则数组的下标指针加1,增加一}
26              end;                    {个存储单元}
27   end;
28   write(n,'!=');
29   for i:=l downto 1 do            {输出处理}
30    begin
31      if i=l then write(a[i])
32             else begin
33                   str(a[i],st1);
34                   while length(st1)<4 do
35                   st1:='0'+st1;
36                   write(st1);
37                  end;
38    end;
39   writeln;
40 end.
扩大进制法
posted @ 2016-02-01 22:13  ZJQCation  阅读(584)  评论(0编辑  收藏  举报