原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3974417.html

 

本文主要介绍如何在Storm编程实现与Kafka的集成

  一、实现模型

   数据流程:

    1、Kafka Producter生成topic1主题的消息 

    2、Storm中有个Topology,包含了KafkaSpout、SenqueceBolt、KafkaBolt三个组件。其中KafkaSpout订阅了topic1主题消息,然后发送

      给SenqueceBolt加工处理,最后数据由KafkaBolt生成topic2主题消息发送给Kafka

    3、Kafka Consumer负责消费topic2主题的消息

    

    

  二、Topology实现

    1、创建maven工程,配置pom.xml

      需要依赖storm-core、kafka_2.10、storm-kafka三个包

  <dependencies>  
      <dependency>
           <groupId>org.apache.storm</groupId>
             <artifactId>storm-core</artifactId>
             <version>0.9.2-incubating</version>
             <scope>provided</scope> 
       </dependency>
   
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka_2.10</artifactId>
        <version>0.8.1.1</version>
        <exclusions>
            <exclusion>
                <groupId>org.apache.zookeeper</groupId>
                <artifactId>zookeeper</artifactId>
            </exclusion>
            <exclusion>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
       
        <dependency>  
          <groupId>org.apache.storm</groupId>  
         <artifactId>storm-kafka</artifactId>  
          <version>0.9.2-incubating</version>  
    </dependency>  
  </dependencies>
  
  <build>
    <plugins>
      <plugin>
        <artifactId>maven-assembly-plugin</artifactId>
        <version>2.4</version>
        <configuration>
          <descriptorRefs>
            <descriptorRef>jar-with-dependencies</descriptorRef>
          </descriptorRefs>
        </configuration>
        <executions>
          <execution>
            <id>make-assembly</id> 
            <phase>package</phase>
            <goals>
              <goal>single</goal>
            </goals>
          </execution>
        </executions>
      </plugin>
    </plugins>
  </build>

 

    2、KafkaSpout

      KafkaSpout是Storm中自带的Spout,源码在https://github.com/apache/incubator-storm/tree/master/external

      使用KafkaSpout时需要子集实现Scheme接口,它主要负责从消息流中解析出需要的数据

public class MessageScheme implements Scheme { 
    
    /* (non-Javadoc)
     * @see backtype.storm.spout.Scheme#deserialize(byte[])
     */
    public List<Object> deserialize(byte[] ser) {
        try {
            String msg = new String(ser, "UTF-8"); 
            return new Values(msg);
        } catch (UnsupportedEncodingException e) {  
         
        }
        return null;
    }
    
    
    /* (non-Javadoc)
     * @see backtype.storm.spout.Scheme#getOutputFields()
     */
    public Fields getOutputFields() {
        // TODO Auto-generated method stub
        return new Fields("msg");  
    }  
} 

    3、SenqueceBolt

       SenqueceBolt实现很简单,在接收的spout的消息前面加上“I‘m” 

public class SenqueceBolt extends BaseBasicBolt{
    
    /* (non-Javadoc)
     * @see backtype.storm.topology.IBasicBolt#execute(backtype.storm.tuple.Tuple, backtype.storm.topology.BasicOutputCollector)
     */
    public void execute(Tuple input, BasicOutputCollector collector) {
        // TODO Auto-generated method stub
         String word = (String) input.getValue(0);  
         String out = "I'm " + word +  "!";  
         System.out.println("out=" + out);
         collector.emit(new Values(out));
    }
    
    /* (non-Javadoc)
     * @see backtype.storm.topology.IComponent#declareOutputFields(backtype.storm.topology.OutputFieldsDeclarer)
     */
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("message"));
    }
} 

    4、KafkaBolt

      KafkaBolt是Storm中自带的Bolt,负责向Kafka发送主题消息

    5、Topology

public class StormKafkaTopo {   
    public static void main(String[] args) throws Exception { 
     // 配置Zookeeper地址 BrokerHosts brokerHosts
= new ZkHosts("node04:2181,node05:2181,node06:2181"); // 配置Kafka订阅的Topic,以及zookeeper中数据节点目录和名字 SpoutConfig spoutConfig = new SpoutConfig(brokerHosts, "topic1", "/zkkafkaspout" , "kafkaspout");
     // 配置KafkaBolt中的kafka.broker.properties Config conf
= new Config(); Map<String, String> map = new HashMap<String, String>();
     // 配置Kafka broker地址 map.put(
"metadata.broker.list", "node04:9092"); // serializer.class为消息的序列化类 map.put("serializer.class", "kafka.serializer.StringEncoder"); conf.put("kafka.broker.properties", map);
    // 配置KafkaBolt生成的topic conf.put(
"topic", "topic2"); spoutConfig.scheme = new SchemeAsMultiScheme(new MessageScheme()); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("spout", new KafkaSpout(spoutConfig)); builder.setBolt("bolt", new SenqueceBolt()).shuffleGrouping("spout"); builder.setBolt("kafkabolt", new KafkaBolt<String, Integer>()).shuffleGrouping("bolt"); if (args != null && args.length > 0) { conf.setNumWorkers(3); StormSubmitter.submitTopology(args[0], conf, builder.createTopology()); } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology("Topo", conf, builder.createTopology()); Utils.sleep(100000); cluster.killTopology("Topo"); cluster.shutdown(); } } }

 

       

  三、测试验证

    1、使用Kafka client模拟Kafka Producter ,生成topic1主题   

      bin/kafka-console-producer.sh --broker-list node04:9092 --topic topic1

    2、使用Kafka client模拟Kafka Consumer,订阅topic2主题

      bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic topic2 --from-beginning

    3、运行Strom Topology

      bin/storm jar storm-kafka-0.0.1-SNAPSHOT-jar-with-dependencies.jar  StormKafkaTopo KafkaStorm

    4、运行结果

        

         

原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3974417.html 

posted on 2014-09-16 11:59  tovin  阅读(9090)  评论(2编辑  收藏  举报