复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答
八、(本题10分) 设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化.
分析 证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩阵理论中常见的技巧; 第二步, 利用半正定阵的三个重要性质 (参考新白皮书的例 8.43、例 8.44 和例 8.45) 来构造合适的相似变换. 以下两种证法分别利用了半正定阵的第一个和第三个重要性质, 其难易度大致相当, 但第三个性质显然更强有力一些.
证明 设 $C$ 为非异实矩阵, 使得 $C'AC=\mathrm{diag}\{I_r,0\}$, 则 $AB$ 相似于 $$C'AB(C')^{-1}=(C'AC)\big(C^{-1}B(C^{-1})'\big),$$ 而 $C^{-1}B(C^{-1})'$ 仍然是半正定阵, 因此我们可从一开始就假设 $A$ 是合同标准型 $\mathrm{diag}\{I_r,0\}$. 设 $B=\begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ \end{pmatrix}$ 为对应的分块, 则 $AB=\begin{pmatrix} B_{11} & B_{12} \\ 0 & 0 \\ \end{pmatrix}$.
证法一 (利用半正定阵的第一个性质, 新白皮书的例 8.43) 由 $B$ 的半正定性可知 $B_{11}$ 也是半正定阵, 故存在正交阵 $P$, 使得 $P'B_{11}P=\mathrm{diag}\{\Lambda,0\}$, 其中 $\Lambda=\mathrm{diag}\{\lambda_1,\cdots,\lambda_s\}$, $\lambda_i>0\,(1\leq i\leq s)$. 设 $Q=\begin{pmatrix} P & 0 \\ 0 & I \\ \end{pmatrix}$, 则 $Q$ 为 $n$ 阶正交阵, 考虑如下正交相似变换: $$Q'(AB)Q\!=\!\begin{pmatrix} P' & 0 \\ 0 & I \\ \end{pmatrix}\begin{pmatrix} B_{11} & B_{12} \\ 0 & 0 \\ \end{pmatrix}\begin{pmatrix} P & 0 \\ 0 & I \\ \end{pmatrix}\!=\!\begin{pmatrix} P'B_{11}P & P'B_{12} \\ 0 & 0 \\ \end{pmatrix}\!=\!\begin{pmatrix} \Lambda & 0 & D_1 \\ 0 & 0 & D_2\\ 0 & 0 & 0\\ \end{pmatrix},$$ $$Q'BQ\!=\!\begin{pmatrix} P' & 0 \\ 0 & I \\ \end{pmatrix}\begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ \end{pmatrix}\begin{pmatrix} P & 0 \\ 0 & I \\ \end{pmatrix}\!=\!\begin{pmatrix} P'B_{11}P & P'B_{12} \\ B_{21}P & B_{22} \\ \end{pmatrix}\!=\!\begin{pmatrix} \Lambda & 0 & D_1 \\ 0 & 0 & D_2\\ D_1' & D_2' & B_{22}\\ \end{pmatrix},$$ 其中 $P'B_{12}=\begin{pmatrix} D_1 \\ D_2 \\ \end{pmatrix}$, $B_{21}P=(P'B_{12})'=(D_1',D_2')$. 注意到 $Q'BQ$ 是半正定阵并且第 $(2,2)$-分块为零, 故由新白皮书的例 8.43 可知, $Q'BQ$ 的第二分块行和第二分块列全为零, 即 $D_2=0$. 接着考虑如下相似变换: $$\begin{pmatrix} I & 0 & \Lambda^{-1}D_1 \\ 0 & I & 0 \\ 0 & 0 & I \\ \end{pmatrix}Q'(AB)Q\begin{pmatrix} I & 0 & -\Lambda^{-1}D_1 \\ 0 & I & 0 \\ 0 & 0 & I \\ \end{pmatrix}=\begin{pmatrix} \Lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix},$$ 即 $AB$ 相似于对角阵 $\mathrm{diag}\{\Lambda,0,0\}$, 结论得证.
证法二 (利用半正定阵的第三个性质, 新白皮书的例 8.45) 因为 $B$ 半正定, 故由新白皮书的例 8.45 可得 $r(B_{11}\mid B_{12})=r(B_{11})$, 于是 $B_{12}$ 的列向量都可表示为 $B_{11}$ 列向量的线性组合, 从而存在实矩阵 $M$, 使得 $B_{11}M=B_{12}$. 考虑如下相似变换: $$\begin{pmatrix} I & M \\ 0 & I \\ \end{pmatrix}AB\begin{pmatrix} I & -M \\ 0 & I \\ \end{pmatrix}=\begin{pmatrix} I & M \\ 0 & I \\ \end{pmatrix}\begin{pmatrix} B_{11} & B_{12} \\ 0 & 0 \\ \end{pmatrix}\begin{pmatrix} I & -M \\ 0 & I \\ \end{pmatrix}=\begin{pmatrix} B_{11} & 0 \\ 0 & 0 \\ \end{pmatrix},$$ 于是 $AB$ 相似于 $\mathrm{diag}\{B_{11},0\}$, 这是一个实对称矩阵, 它可正交对角化, 从而 $AB$ 也可对角化. $\Box$
注 在本次期末考试中, 14级只有钱列同学一人给出了本题的完整证明.