[问题2015S14] 复旦高等代数 II(14级)每周一题(第十五教学周)
[问题2015S14] 设 \(J=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix}\), \(A\) 为 \(2n\) 阶实矩阵, 满足 \(AJA'=J\), 证明: \(\det(A)=1\).
提示 \(\det(A)=\pm 1\) 是显然的, 设法计算 \(AJ+JA\) 的行列式, 再证明 \(\det(A)>0\) 即可.
[问题2015S14] 设 \(J=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix}\), \(A\) 为 \(2n\) 阶实矩阵, 满足 \(AJA'=J\), 证明: \(\det(A)=1\).
提示 \(\det(A)=\pm 1\) 是显然的, 设法计算 \(AJ+JA\) 的行列式, 再证明 \(\det(A)>0\) 即可.