[问题2015S06] 复旦高等代数 II(14级)每周一题(第七教学周)

[问题2015S06]  设 \(V\) 是数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换.

(1) 求证: 对任一非零向量 \(\alpha\in V\), \(U=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots)\) 是包含 \(\alpha\) 的最小的 \(\varphi\)-不变子空间. 子空间 \(U\) 称为 \(\alpha\) 关于 \(\varphi\) 的循环子空间, \(\alpha\) 称为循环子空间 \(U\) 的循环向量. 若设 \(\dim U=m\), 则 \(\{\alpha,\varphi(\alpha),\cdots,\varphi^{m-1}(\alpha)\}\) 是 \(U\) 的一组基.

(2) 利用 (1) 的结论证明 Cayley-Hamilton 定理.

(3) 求证: \(V\) 只有平凡的 \(\varphi\)-不变子空间当且仅当对任一非零向量 \(\alpha\in V\), \(\alpha\) 关于 \(\varphi\) 的循环子空间等于 \(V\).

(4) 证明: \(V\) 只有平凡的 \(\varphi\)-不变子空间当且仅当 \(\varphi\) 的特征多项式 \(f(\lambda)=|\lambda I_V-\varphi|\) 是 \(\mathbb{K}\) 上的不可约多项式.

posted @ 2015-04-18 12:10  torsor  阅读(901)  评论(0编辑  收藏  举报