[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得

\[ |A|=\begin{vmatrix} \sum_{i=1}^na_i+(n-2)a_1 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ \sum_{i=1}^na_i+(n-2)a_2 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^na_i+(n-2)a_{n-1} & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ \sum_{i=1}^na_i+(n-2)a_n & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix}. \]

将上述行列式的第一列拆分开,有

\[ |A|=\sum_{i=1}^na_i\begin{vmatrix} 1 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ 1 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ 1 & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix}\]

\[+(n-2)\begin{vmatrix} a_1 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ a_2 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ a_n & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix}. \]

对上式右边第一个行列式: 将第一列分别乘以 \(-a_i\) 加到第 \(i\) 列上,\(i=2,\cdots,n\),再从每行提出公因子;对上式右边第二个行列式: 将第一列乘以 \(-1\) 分别加到第 \(i\) 列上,再从每列提出公因子,\(i=2,\cdots,n\),可得

\[ |A|=\sum_{i=1}^na_i\prod_{i=1}^na_i\begin{vmatrix} \frac{1}{a_1} & 1 & \cdots & 1 & 1 \\ \frac{1}{a_2} & -1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}} & 1 & \cdots & -1 & 1 \\ \frac{1}{a_n} & 1 & \cdots & 1 & -1 \end{vmatrix}\]

\[+(n-2)\prod_{i=2}^na_i\begin{vmatrix} a_1 & 1 & \cdots & 1 & 1 \\ a_2 & -1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & 1 & \cdots & -1 & 1 \\ a_n & 1 & \cdots & 1 & -1 \end{vmatrix}. \]

对上式右边两个行列式: 都是第一行乘以 \(-1\) 分别加到第 \(i\) 行上,\(i=2,\cdots,n\),可将它们都变为爪型行列式:

\[ |A|=\sum_{i=1}^na_i\prod_{i=1}^na_i\begin{vmatrix} \frac{1}{a_1} & 1 & \cdots & 1 & 1 \\ \frac{1}{a_2}-\frac{1}{a_1} & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}}-\frac{1}{a_1} & 0 & \cdots & -2 & 0 \\ \frac{1}{a_n}-\frac{1}{a_1} & 0 & \cdots & 0 & -2 \end{vmatrix}\]

\[+(n-2)\prod_{i=2}^na_i\begin{vmatrix} a_1 & 1 & \cdots & 1 & 1 \\ a_2-a_1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1}-a_1 & 0 & \cdots & -2 & 0 \\ a_n-a_1 & 0 & \cdots & 0 & -2 \end{vmatrix}. \]

对上式右边两个行列式: 都是第 \(i\) 行乘以 \(\frac{1}{2}\) 分别加到第一行上,\(i=2,\cdots,n\),可得

\[ |A|=\sum_{i=1}^na_i\prod_{i=1}^na_i\begin{vmatrix} \frac{1}{2}(\sum_{i=1}^n\frac{1}{a_i})-\frac{n-2}{2}\frac{1}{a_1} & 0 & \cdots & 0 & 0 \\ \frac{1}{a_2}-\frac{1}{a_1} & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}}-\frac{1}{a_1} & 0 & \cdots & -2 & 0 \\ \frac{1}{a_n}-\frac{1}{a_1} & 0 & \cdots & 0 & -2 \end{vmatrix}\]

\[+(n-2)\prod_{i=2}^na_i\begin{vmatrix} \frac{1}{2}(\sum_{i=1}^na_ i)-\frac{n-2}{2}a_1 & 0 & \cdots & 0 & 0 \\ a_2-a_1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1}-a_1 & 0 & \cdots & -2 & 0 \\ a_n-a_1 & 0 & \cdots & 0 & -2 \end{vmatrix} \]

\[=(-2)^{n-2}\prod_{i=1}^na_i\bigg((n-2)^2-\Big(\sum_{i=1}^na_i\Big)\Big(\sum_{i=1}^n\frac{1}{a_i}\Big)\bigg). \quad\Box\]

posted @ 2014-10-19 08:06  torsor  阅读(1612)  评论(0编辑  收藏  举报