POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N

Longge's problem
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6383   Accepted: 2043

Description

Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 

"Oh, I know, I know!" Longge shouts! But do you know? Please solve it. 

Input

Input contain several test case. 
A number N per line. 

Output

For each N, output ,∑gcd(i, N) 1<=i <=N, a line

Sample Input

2
6

Sample Output

3
15

Source

POJ Contest,Author:Mathematica@ZSU
 
 1 /*
 2 
 3 题意:∑gcd(i, N) 1<=i <=N。由于N 2^31.
 4 刚开始想用欧拉求得1的个数,再求N的素因子,用容斥
 5 来求解。发现,就算是求得的素因子,也不最大公约数。
 6 
 7 HUD的一道题,提供了思路。
 8 
 9 枚举吧。
10 if(N%i==0)
11 {
12 最大公约数为1的时候,有几个。欧拉值(N/1);
13 最大公约数为2的时候,有几个。欧拉值(N/2);
14 .....
15 }
16 
17 */
18 
19 #include<iostream>
20 #include<cstdio>
21 #include<cstdlib>
22 #include<cstring>
23 using namespace std;
24 
25 
26 __int64 Euler(__int64 n)
27 {
28     __int64 i,temp=n;
29     for(i=2;i*i<=n;i++)
30     if(n%i==0)
31     {
32         while(n%i==0)
33         n=n/i;
34         temp=temp/i*(i-1);
35     }
36     if(n!=1)
37     temp=temp/n*(n-1);
38     return temp;
39 }
40 
41 int main()
42 {
43     __int64 n,i,sum,k;
44     while(scanf("%I64d",&n)>0)
45     {
46        sum=0;
47        for(i=1;i*i<=n;i++)
48        {
49            if(n%i==0)
50            sum=sum+Euler(n/i)*i;
51            k=n/i;
52            if(n%k==0 && k!=i)
53            sum=sum+Euler(n/k)*k;
54        }
55        printf("%I64d\n",sum);
56     }
57     return 0;
58 }

 

posted @ 2013-08-09 09:51  芷水  阅读(1423)  评论(0编辑  收藏  举报