kosaraju算法小结
kosaraju算法是用于求有向图的强连通分量的算法之一
步骤概要:
1. DFS有向图G,并以后根序记录节点
2. 把存在于记录集中且最后访问节点作为起点,DFS反图GT,并以先根序把节点从记录中剔除;
3. 若此次不能DFS反图GT所有节点,则重复步骤2,直到所有节点都被剔除出记录;每次剔除掉的节点集即为原有向图G的一个强连通分量
简要证明:
1. 第一次DFS有向图G时,最后记录下的节点必为最后一棵生成树的根节点。
证明:假设最后记录下节点不是树根,则必存在一节点为树根,且树根节点必为此节点祖先;而由后根序访问可知祖先节点比此节点更晚访问,矛盾;原命题成立
2. 第一次DFS的生成森林中,取两节点A、B,满足:B比A更晚记录下,且B不是A的祖先(即在第一次DFS中,A、B处于不同的生成树中);则在第二次DFS的生成森林中,B不是A的祖先,且A也不是B的祖先(即在第二次DFS中,A、B处于不同的生成树中)。
证明:假设在第二次DFS的生成森林中,B是A的祖先,则反图GT中存在B到A路径,即第一次DFS生成森林中,A是B的祖先,则A必比B更晚记录下,矛盾;假设在第二次DFS的生成森林中,A是B的祖先,则反图GT中存在A到B路径,即第一次DFS生成森林中,B是A的祖先,矛盾;原命题成立
3. 按上述步骤求出的必为强连通分量
证明:首先,证明2保证了第二次DFS中的每一棵树都是第一次DFS中的某棵树或某棵树的子树。其次,对于第二次DFS中的每棵树,第一次DFS保证了从根到其子孙的连通性,第二次DFS保证了根到子孙的反向连通性(即子孙到根的连通性);由此,此树中的每个节点都通过其根相互连通。