浅谈Slick(1)- 基本功能描述
Slick (Scala language-integrated connection kit)是scala的一个FRM(Functional Relational Mapper),即函数式的关系数据库编程工具库。Slick的主要目的是使关系数据库能更容易、更自然的融入函数式编程模式,它可以使使用者像对待scala集合一样来处理关系数据库表。也就是说可以用scala集合的那些丰富的操作函数来处理库表数据。Slick把数据库编程融入到scala编程中,编程人员可以不需要编写SQL代码。我把Slick官方网站上Slick3.1.1文档的Slick介绍章节中的一些描述和例子拿过来帮助介绍Slick的功能。下面是Slick数据库和类对象关系对应的一个例子:
1 import slick.driver.H2Driver.api._
2 object slickIntro {
3 case class Coffee(id: Int,
4 name: String,
5 supID: Int = 0,
6 price: Double ,
7 sales: Int = 0,
8 total: Int = 0)
9
10 class Coffees(tag: Tag) extends Table[Coffee](tag, "COFFEES") {
11 def id = column[Int]("COF_ID", O.PrimaryKey, O.AutoInc)
12 def name = column[String]("COF_NAME")
13 def supID = column[Int]("SUP_ID")
14 def price = column[Double]("PRICE")
15 def sales = column[Int]("SALES", O.Default(0))
16 def total = column[Int]("TOTAL", O.Default(0))
17 def * = (id, name, supID, price, sales, total) <> (Coffee.tupled, Coffee.unapply)
18 }
19 val coffees = TableQuery[Coffees]
20 //> coffees : slick.lifted.TableQuery[worksheets.slickIntro.Coffees] = Rep(TableExpansion)
21 }
我们把数据库中的COFFEES表与Coffees类做了对应,包括字段、索引、默认值、返回结果集字段等。现在这个coffees就是scala里的一个对象,但它代表了数据库表。现在我们可以用scala语言来编写数据存取程序了:
1 val limit = 10.0 //> limit : Double = 10.0
2 // // 写Query时就像下面这样:
3 ( for( c <- coffees; if c.price < limit ) yield c.name ).result
4 //> res0: slick.driver.H2Driver.StreamingDriverAction[Seq[String],String,slick.dbio.Effect.Read] = slick.driver.JdbcActionComponent$QueryActionExtensionMethodsImpl$$anon$1@46cdf8bd
5 // 相当于 SQL: select COF_NAME from COFFEES where PRICE < 10.0
或者下面这些不同的Query:
1 // 返回"name"字段的Query
2 // 相当于 SQL: select NAME from COFFEES
3 coffees.map(_.name)
4 //> res1: slick.lifted.Query[slick.lifted.Rep[String],String,Seq] = Rep(Bind)
5 // 选择 price < 10.0 的所有记录Query
6 // 相当于 SQL: select * from COFFEES where PRICE < 10.0
7 coffees.filter(_.price < 10.0)
8 //> res2: slick.lifted.Query[worksheets.slickIntro.Coffees,worksheets.slickIntro.Coffees#TableElementType,Seq] = Rep(Filter @1946988038)
我们可以这样表述:coffees.map(_.name) >>> coffees.map{row=>row.name}, coffees.filter(_.price<10.0) >>> coffees.filter{row=>row.price<10.0),都是函数式集合操作语法。
Slick把Query编写与scala语言集成,这使编程人员可以用熟悉惯用的scala来表述SQL Query,直接的好处是scalac在编译时就能够发现Query错误:
1 //coffees.map(_.prices) 2 //编译错误:value prices is not a member of worksheets.slickIntro.Coffees
当然,嵌入scala的Query还可以获得运行效率的提升,因为在编译时可以进行前期优化。
最新版本的Slick最大的特点是采用了Functional I/O技术,从而实现了安全的多线程无阻碍I/O操作。再就是实现了Query的函数组合(functional composition),使Query编程更贴近函数式编程模式。通过函数组合实现代码重复利用,提高编程工作效率。具体实现方式是利用freemonad(DBIOAction类型就是个freemonad)的延迟运算模式,将DBIOAction的编程和实际运算分离,在DBIOAction编程过程中不会产生副作用(side-effect),从而实现纯代码的函数组合。我们来看看Query函数组合和DBIOAction运算示范:
1 import scala.concurrent.ExecutionContext.Implicits.global
2 val qDelete = coffees.filter(_.price > 0.0).delete
3 //> qDelete : slick.driver.H2Driver.DriverAction[Int,slick.dbio.NoStream,slick.dbio.Effect.Write] ...
4 val qAdd1 = (coffees returning coffees.map(_.id)) += Coffee(name="Columbia",price=128.0)
5 //> qAdd1 : slick.profile.FixedSqlAction[Int,slick.dbio.NoStream,slick.dbio.Effect.Write]...
6 val qAdd2 = (coffees returning coffees.map(_.id)) += Coffee(name="Blue Mountain",price=828.0)
7 //> qAdd2 : slick.profile.FixedSqlAction[Int,slick.dbio.NoStream,slick.dbio.Effect.Write]...
8 def getNameAndPrice(n: Int) = coffees.filter(_.id === n)
9 .map(r => (r.name,r.price)).result.head
10 //> getNameAndPrice: (n: Int)slick.profile.SqlAction[(String, Double),slick.dbio.NoStream,slick.dbio.Effect.Read]
11
12 val actions = for {
13 _ <- coffees.schema.create
14 _ <- qDelete
15 c1 <- qAdd1
16 c2 <- qAdd2
17 (n1,p1) <- getNameAndPrice(c1)
18 (n2,p2) <- getNameAndPrice(c2)
19 } yield (n1,p1,n2,p2)
20 //> actions : slick.dbio.DBIOAction[(String, Double, String, Double),..
我们可以放心的来组合这个actions,不用担心有任何副作用。actions的类型是:DBAction[String,Double,String,Double]。我们必须用Database.Run来真正开始运算,产生副作用:
1 import java.sql.SQLException
2 import scala.concurrent.Await
3 import scala.concurrent.duration._
4 val db = Database.forURL("jdbc:h2:mem:demo", driver="org.h2.Driver")
5 //> db : slick.driver.H2Driver.backend.DatabaseDef = slick.jdbc.JdbcBackend$DatabaseDef@1a5b6f42
6 Await.result(
7 db.run(actions.transactionally).map { res =>
8 println(s"Add coffee: ${res._1},${res._2} and ${res._3},${res._4}")
9 }.recover {
10 case e: SQLException => println("Caught exception: " + e.getMessage)
11 }, Duration.Inf) //> Add coffee: Columbia,128.0 and Blue Mountain,828.0
在特殊的情况下我们也可以引用纯SQL语句:Slick提供了Plain SQL API, 如下:
1 val limit = 10.0 2 sql"select COF_NAME from COFFEES where PRICE < $limit".as[String] 3 // 用$来绑定变量: // select COF_NAME from COFFEES where PRICE < ?
下面是这篇讨论的示范代码:
1 package worksheets 2 import slick.driver.H2Driver.api._ 3 object slickIntro { 4 case class Coffee(id: Int = 0, 5 name: String, 6 supID: Int = 0, 7 price: Double, 8 sales: Int = 0, 9 total: Int = 0) 10 11 class Coffees(tag: Tag) extends Table[Coffee](tag, "COFFEES") { 12 def id = column[Int]("COF_ID", O.PrimaryKey, O.AutoInc) 13 def name = column[String]("COF_NAME") 14 def supID = column[Int]("SUP_ID") 15 def price = column[Double]("PRICE") 16 def sales = column[Int]("SALES", O.Default(0)) 17 def total = column[Int]("TOTAL", O.Default(0)) 18 def * = (id, name, supID, price, sales, total) <> (Coffee.tupled, Coffee.unapply) 19 } 20 val coffees = TableQuery[Coffees] 21 22 val limit = 10.0 23 // // 写Query时就像下面这样: 24 ( for( c <- coffees; if c.price < limit ) yield c.name ).result 25 // 相当于 SQL: select COF_NAME from COFFEES where PRICE < 10.0 26 27 // 返回"name"字段的Query 28 // 相当于 SQL: select NAME from COFFEES 29 coffees.map(_.name) 30 // 选择 price < 10.0 的所有记录Query 31 // 相当于 SQL: select * from COFFEES where PRICE < 10.0 32 coffees.filter(_.price < 10.0) 33 //coffees.map(_.prices) 34 //编译错误:value prices is not a member of worksheets.slickIntro.Coffees 35 36 37 import scala.concurrent.ExecutionContext.Implicits.global 38 val qDelete = coffees.filter(_.price > 0.0).delete 39 val qAdd1 = (coffees returning coffees.map(_.id)) += Coffee(name="Columbia",price=128.0) 40 val qAdd2 = (coffees returning coffees.map(_.id)) += Coffee(name="Blue Mountain",price=828.0) 41 def getNameAndPrice(n: Int) = coffees.filter(_.id === n) 42 .map(r => (r.name,r.price)).result.head 43 44 val actions = for { 45 _ <- coffees.schema.create 46 _ <- qDelete 47 c1 <- qAdd1 48 c2 <- qAdd2 49 (n1,p1) <- getNameAndPrice(c1) 50 (n2,p2) <- getNameAndPrice(c2) 51 } yield (n1,p1,n2,p2) 52 import java.sql.SQLException 53 import scala.concurrent.Await 54 import scala.concurrent.duration._ 55 val db = Database.forURL("jdbc:h2:mem:demo", driver="org.h2.Driver") 56 Await.result( 57 db.run(actions.transactionally).map { res => 58 println(s"Add coffee: ${res._1},${res._2} and ${res._3},${res._4}") 59 }.recover { 60 case e: SQLException => println("Caught exception: " + e.getMessage) 61 }, Duration.Inf) 62 63 }