Eclipse下使用Stanford CoreNLP的方法

源码下载地址:CoreNLP官网

目前release的CoreNLP version 3.5.0版本仅支持java-1.8及以上版本,因此有时需要为Eclipse添加jdk-1.8配置,配置方法如下:

  • 首先,去oracle官网下载java-1.8,下载网址为:java下载,安装完成后。
  • 打开Eclipse,选择Window -> Preferences -> Java –> Installed JREs 进行配置:
  • 点击窗体右边的“add”,然后添加一个“Standard VM”(应该是标准虚拟机的意思),然后点击“next”;
  • 在”JRE HOME”那一行点击右边的“Directory…”找到你java 的安装路径,比如“C:Program Files/Java/jdk1.8”

这样你的Eclipse就已经支持jdk-1.8了。

1. 新建java工程,注意编译环境版本选择1.8

2. 将官网下载的源码解压到工程下,并导入所需jar包

如导入stanford-corenlp-3.5.0.jar、stanford-corenlp-3.5.0-javadoc.jar、stanford-corenlp-3.5.0-models.jar、stanford-corenlp-3.5.0-sources.jar、xom.jar等

导入jar包过程为:项目右击->Properties->Java Build Path->Libraries,点击“Add JARs”,在路径中选取相应的jar包即可。

3. 新建TestCoreNLP类,代码如下

 1 package Test;
 2 
 3 import java.util.List;
 4 import java.util.Map;
 5 import java.util.Properties;
 6 
 7 import edu.stanford.nlp.dcoref.CorefChain;
 8 import edu.stanford.nlp.dcoref.CorefCoreAnnotations.CorefChainAnnotation;
 9 import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;
10 import edu.stanford.nlp.ling.CoreAnnotations.NamedEntityTagAnnotation;
11 import edu.stanford.nlp.ling.CoreAnnotations.PartOfSpeechAnnotation;
12 import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;
13 import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;
14 import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
15 import edu.stanford.nlp.ling.CoreLabel;
16 import edu.stanford.nlp.pipeline.Annotation;
17 import edu.stanford.nlp.pipeline.StanfordCoreNLP;
18 import edu.stanford.nlp.semgraph.SemanticGraph;
19 import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation;
20 import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;
21 import edu.stanford.nlp.trees.Tree;
22 import edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation;
23 import edu.stanford.nlp.util.CoreMap;
24 
25 public class TestCoreNLP {
26     public static void main(String[] args) {
27         // creates a StanfordCoreNLP object, with POS tagging, lemmatization, NER, parsing, and coreference resolution
28         Properties props = new Properties();
29         props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
30         StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
31         
32         // read some text in the text variable
33         String text = "Add your text here:Beijing sings Lenovo";
34         
35         // create an empty Annotation just with the given text
36         Annotation document = new Annotation(text);
37         
38         // run all Annotators on this text
39         pipeline.annotate(document);
40         
41         // these are all the sentences in this document
42         // a CoreMap is essentially a Map that uses class objects as keys and has values with custom types
43         List<CoreMap> sentences = document.get(SentencesAnnotation.class);
44         
45         System.out.println("word\tpos\tlemma\tner");
46         for(CoreMap sentence: sentences) {
47              // traversing the words in the current sentence
48              // a CoreLabel is a CoreMap with additional token-specific methods
49             for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
50                 // this is the text of the token
51                 String word = token.get(TextAnnotation.class);
52                 // this is the POS tag of the token
53                 String pos = token.get(PartOfSpeechAnnotation.class);
54                 // this is the NER label of the token
55                 String ne = token.get(NamedEntityTagAnnotation.class);
56                 String lemma = token.get(LemmaAnnotation.class);
57                 
58                 System.out.println(word+"\t"+pos+"\t"+lemma+"\t"+ne);
59             }
60             // this is the parse tree of the current sentence
61             Tree tree = sentence.get(TreeAnnotation.class);
62             
63             // this is the Stanford dependency graph of the current sentence
64             SemanticGraph dependencies = sentence.get(CollapsedCCProcessedDependenciesAnnotation.class);
65         }
66         // This is the coreference link graph
67         // Each chain stores a set of mentions that link to each other,
68         // along with a method for getting the most representative mention
69         // Both sentence and token offsets start at 1!
70         Map<Integer, CorefChain> graph = document.get(CorefChainAnnotation.class);
71     }
72 }

PS:该代码的思想是将text字符串交给Stanford CoreNLP处理,StanfordCoreNLP的各个组件(annotator)按“tokenize(分词), ssplit(断句), pos(词性标注), lemma(词元化), ner(命名实体识别), parse(语法分析), dcoref(同义词分辨)”顺序进行处理。

处理完后List<CoreMap> sentences = document.get(SentencesAnnotation.class);中包含了所有分析结果,遍历即可获知结果。

这里简单的将单词、词性、词元、是否实体打印出来。其余的用法参见官网(如sentiment、parse、relation等)。

4. 执行结果:

posted @ 2014-12-09 14:07  小白菜的BLOG  阅读(12769)  评论(3编辑  收藏  举报