最小环
1 定义:
通常来说最小环是针对有向图而言
从一个点出发,经过一条简单路径回到起点成为环.图的最小环就是所有环中长度最小的.
2.怎样求最小环呢?
1传统的解决方法(dijkstra):
任意一个环的权值,我们都可以看成两个有边相连的结点i、j的直接距离加上i、j间不包含边(边i->j)的最短路径。求最短路径我们第一个想到的就是Dijkstra算法。而Dijkstra所求的是一个点到所有点的最短距离。用Dijkstra所求的i、j的最短距离一定是i、j的直接距离(如果i,j连通),所以我们需要先将i、j的边从图中删除(若i,j不连通,则不用删除),再用Dijkstra求新图中i、j的最短距离即可。所以我们每次在图中选取一条边,把它从图中删掉.然后对删掉的那条边所对应的2点进行Dijkstra,也就是m次Dijkstra。
2.floyd求最小环:
抛开Dijkstra算法,进而我们想到用Floyd算法。我们知道,Floyd算法在进行时会不断更新矩阵dist(k)。设dist[k,i,j]表示从结点i到结点j且满足所有中间结点,它们均属于集合{1,2,⋯ ,k}的一条最短路径的权。其中dist[0,i,j ]即为初始状态i到j的直接距离。对于一个给定的赋权有向图, 求出其中权值和最小的一个环。我们可以将任意一个环化成如下形式:u->k->v ->(x1-> x2-> ⋯ xm1)-> u(u与k、k与v都是直接相连的),其中v ->(x1-> 2-> ⋯ m)-> u是指v到u不经过k的一种路径。
在u,k,v确定的情况下,要使环权值最小, 则要求 (x1一>x2->⋯一>xm)->u路径权值最小.即要求其为v到u不经过k的最短路径,则这个经过u,k,v的环的最短路径就是:[v到u不包含k的最短距离]+dist[O,u,k]+dist[O,k,v]。我们用Floyd只能求出任意2点间满足中间结点均属于集合{1,2,⋯ ,k}的最短路径,可是我们如何求出v到u不包含k的最短距离呢?
现在我们给k加一个限制条件:k为当前环中的序号最大的节点(简称最大点)。因为k是最大点,所以当前环中没有任何一个点≥k,即所有点都<k。因为v->(x1->x2->......xm)->u属于当前环,所以x1,x2,⋯ ,xm<k,即x1,x2.⋯。xm≤k一1。这样,v到u的最短距离就可以表示成dist[k一1 ,u,v]。dist[k一1,v,u]表示的是从v到u且满足所有中间结点均属于集合{1,2,⋯ ,k一1}的一条最短路径的权。接下来,我们就可以求出v到u不包含k的最短距离了。这里只是要求不包含k,而上述方法用的是dist[k一1,v,u],求出的路径永远不会包含k+l,k+2,⋯ 。万一所求的最小环中包含k+1,k+2,⋯ 怎么办呢?的确,如果最小环中包含比k大的节点,在当前u,k,v所求出的环显然不是那个最小环。然而我们知道,这个最小环中必定有一个最大点kO,也就是说,虽然当前k没有求出我们所需要的最小环,但是当我们从k做到kO的时候,这个环上的所有点都小于kO了.也就是说在k=kO时一定能求出这个最小环。我们用一个实例来说明:假设最小环为1—3—4—5—6—2—1。的确,在u=l,v=4,k=3时,k<6,dist[3,4,1]的确求出的不是4—5—6—2—1这个环,但是,当u=4,v=6,k=5或u=5,v=2,k=6时,dist[k,v,u]表示的都是这条最短路径.所以我们在Floyd以后,只要枚举u.v,k三个变量即可求出最小环。时间复杂度为O(n3)。我们可以发现,Floyd和最后枚举u,v,k三个变量求最小环的过程都是u,v,k三个变量,所以我们可以将其合并。这样,我们在k变量变化的同时,也就是进行Floyd算法的同时,寻找最大点为k的最小环。
(引自http://www.cnblogs.com/Yz81128/archive/2012/08/15/2640940.html)
此问题的难点就是路径。这里要用到另一个矩阵P,它的定义是这样的:
p(ij)的值如果为p,就表示i到j的最短行经为i->…->p->j,也就是说p是i到j的最短行径中的j之前
的最后一个城市。P矩阵的初值为p(ij)=i。有了这个矩阵之后,要找最短路径就轻而易举了。对于i
到j而言找出p(ij),令为p,就知道了路径i->…->p->j;再去找p(ip),如果值为q,i到p的最短路径
为i->…->q->p;再去找p(iq),如果值为r,i到q的最短路径为i->…->r->q;所以一再反复,到了某
个p(it)的值为i时,就表示i到t的最短路径为i->t,就会的到答案了,i到j的最短行径为i->t->…->
q->p->j。因为上述的算法是从终点到起点的顺序找出来的,所以输出的时候要把它倒过来。
但是,如何动态的回填P矩阵的值呢?回想一下,当d(ij)>d(ik)+d(kj)时,就要让i到j的最短路径改
为走i->…->k->…->j这一条路,但是d(kj)的值是已知的,换句话说,就是k->…->j这条路是已知的,
所以k->…->j这条路上j的上一个城市(即p(kj))也是已知的,当然,因为要改走i->…->k->…->j这一
条路,j的上一个城市正好是p(kj)。所以一旦发现d(ij)>d(ik)+d(kj),就把p(kj)存入p(ij)。
(引自http://hi.baidu.com/shouzhewei/item/5172451cb2db35727b5f2503)