Opencv step by step - 自适应阈值
上个博客提到的阈值化只是针对图像全局进行阈值化,opencv提供了一个更好的函数cvAdaptiveThreshold,可以做到局部特征的阈值化,这样一来,
整个图像的信息可以被更好的提取。
#include <cv.h> #include <highgui.h> #include "math.h" IplImage *img_gray = NULL, *img_thres = NULL, *img_adaptive = NULL; int main(int argc, char **argv) { double threadshould = 100.0; int threadshould_type = CV_THRESH_BINARY; int adaptive_method = CV_ADAPTIVE_THRESH_GAUSSIAN_C; int block_size = 11; double offset = 5; if(NULL == (img_gray = cvLoadImage(argv[1], CV_LOAD_IMAGE_GRAYSCALE))) return -1; img_thres = cvCreateImage(cvGetSize(img_gray), img_gray->depth, 1); img_adaptive = cvCreateImage(cvGetSize(img_gray), img_gray->depth, 1); cvThreshold(img_gray, img_thres, threadshould, 255, threadshould_type); cvAdaptiveThreshold(img_gray, img_adaptive, 255, adaptive_method, threadshould_type, block_size, offset); cvNamedWindow("ORG", 1); cvNamedWindow("THRES", 1); cvNamedWindow("ADAPTIVE_THRES", 1); cvShowImage("ORG", img_gray); cvShowImage("THRES", img_thres); cvShowImage("ADAPTIVE_THRES", img_adaptive); while(1) { if(cvWaitKey(10) & 0x7f == 27) break; } cvDestroyWindow("ORG"); cvDestroyWindow("THRES"); cvDestroyWindow("ADAPTIVE_THRES"); cvReleaseImage(&img_gray); cvReleaseImage(&img_thres); cvReleaseImage(&img_adaptive); }
这里使用了阈值化和自适应阈值的比较。可以简单的看效果,明显是自适应阈值比较容易提取特征(虽然左图好看一点):