基础数据结构 之 树(python实现)
树是数据结构中常用到的一种结构,其实现较栈和队稍为复杂一些。若树中的所有节点的孩子节点数量不超过2个,则该为一个二叉树。二叉树可用于查找和排序等。二叉树的主要操作有:建树,遍历等。遍历是树中的一个最为重要的操作,可分为深度优先遍历和广度优先遍历。其中,尝试优先遍历又可分为先序遍历,中序遍历和后序遍历。深度优先遍历可使用递规来实现,也可以用栈和队通过循环实现。后序的非递规遍历,比其他两种遍历稍为复杂些。
下面给出一个python实现二叉树的例子:
class Node(object): def __init__(self, data = -1, lchild = None, rchild = None): self.data = data self.lchild = lchild self.rchild = rchild class BinaryTree(object): def __init__(self): self.root = Node() def add(self, data): node = Node(data) if self.isEmpty(): self.root = node else: tree_node = self.root queue = [] queue.append(self.root) while queue: tree_node = queue.pop(0) if tree_node.lchild == None: tree_node.lchild = node return elif tree_node.rchild == None: tree_node.rchild = node return else: queue.append(tree_node.lchild) queue.append(tree_node.rchild) def pre_order(self, start): node = start if node == None: return print node.data, if node.lchild == None and node.rchild == None: return self.pre_order(node.lchild) self.pre_order(node.rchild) def pre_order_loop(self): if self.isEmpty(): return stack = [] node = self.root while node or stack: while node: print node.data, stack.append(node) node = node.lchild if stack: node = stack.pop() node = node.rchild def in_order(self, start): node = start if node == None: return self.in_order(node.lchild) print node.data, self.in_order(node.rchild) def in_order_loop(self): if self.isEmpty(): returen stack = [] node = self.root while node or stack: while node: stack.append(node) node = node.lchild if stack: node = stack.pop() print node.data, node = node.rchild def post_order(self, start): node = start if node == None: return self.post_order(node.lchild) self.post_order(node.rchild) print node.data, def post_order_loop(self): if self.isEmpty(): return node = self.root stack = [] queue = [] queue.append(node) while queue: node = queue.pop() if node.lchild: queue.append(node.lchild) if node.rchild: queue.append(node.rchild) stack.append(node) while stack: print stack.pop().data, #if lchild and rchild are None or lchild and rchild are printed, print the parent node node and pop out of the stack #else lchild and rchild push into the stack def post_order_loop1(self): if self.isEmpty(): return stack = [] top = -1 node = self.root stack.append(node) #we need to recognize the last printed node top += 1 pre = None while stack: node = stack[-1] if node.lchild is None and node.rchild is None: print node.data, pre = node top -= 1 elif not pre and (node.lchild == pre or node.rchild == pre): print node.data, pre = node top -= 1 else: if node.rchild: if top < len(stack)-1: stack[top] = node.rchild else: stack.append(node.rchild) if node.lchild: if top < len(stack)-1: stack[top] = node.lchild else: stack.append(node.lchild) def level_order(self): node = self.root if node == None: return queue = [] queue.append(node) while queue: node = queue.pop(0) print node.data, if node.rchild: queue.append(node.rchild) if node.lchild: queue.append(node.lchild) print def isEmpty(self): return True if self.root.data == -1 else False if __name__ == '__main__': arr = [] for i in range(10): arr.append(i) print arr tree = BinaryTree() for i in arr: tree.add(i) print 'level_order:' tree.level_order() print 'pre order:' tree.pre_order(tree.root) print '\npre order loop:' tree.pre_order_loop() print '\nin_order:' tree.in_order(tree.root) print '\nin_order loop:' tree.in_order_loop() print '\npost_order:' tree.post_order(tree.root) print '\npost_order_loop:' tree.post_order_loop() print '\npost_order_loop1:' tree.post_order_loop1()