Fork me on GitHub

maximum-subarray

/**
*
* @author gentleKay
* Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
* For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
* the contiguous subarray[4,−1,2,1]has the largest sum =6.
* click to show more practice.
* More practice:
* If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
*
*
* 例如,给定数组[−2,1、−3,4、−1,2,1、−5,4],
* 相邻子阵列[4、−1、2、1]的最大和=6。
* 单击此处可显示更多练习。
* 更多实践:
* 如果您已经找到了O(N)解决方案,请尝试使用分而治之的方法对另一个解决方案进行编码,这更为微妙。
*/

/**
 * 
 * @author gentleKay
 * Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
 * For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
 * the contiguous subarray[4,−1,2,1]has the largest sum =6.
 * click to show more practice.
 * More practice:
 * If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
 * 
 * 
 * 例如,给定数组[−2,1、−3,4、−1,2,1、−5,4],
 * 相邻子阵列[4、−1、2、1]的最大和=6。
 * 单击此处可显示更多练习。
 * 更多实践:
 * 如果您已经找到了O(N)解决方案,请尝试使用分而治之的方法对另一个解决方案进行编码,这更为微妙。
 */

public class Main17 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int[] A = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
		System.out.println(Main17.maxSubArray(A));
	}
	
	public static int maxSubArray(int[] A) {
		int max = Integer.MIN_VALUE;
		for (int i=0;i<A.length;i++) {
			int sum = 0;
			for (int j=i;j<A.length;j++) {
				sum += A[j];
                if(sum > max){
                    max = sum;
                }
			}
		}
        return max;
    }

}

解题思路:

  主要是进行循环遍历,相加的值与MAX相比较,选出最大的MAX即可。

posted @ 2019-07-29 10:26  gentleKay  阅读(168)  评论(0编辑  收藏  举报