J.U.C并发框架源码阅读(一)AtomicInteger

基于版本jdk1.7.0_80

java.util.concurrent.atomic.AtomicInteger

 

代码如下

/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent.atomic;
import sun.misc.Unsafe;

/**
 * An {@code int} value that may be updated atomically.  See the
 * {@link java.util.concurrent.atomic} package specification for
 * description of the properties of atomic variables. An
 * {@code AtomicInteger} is used in applications such as atomically
 * incremented counters, and cannot be used as a replacement for an
 * {@link java.lang.Integer}. However, this class does extend
 * {@code Number} to allow uniform access by tools and utilities that
 * deal with numerically-based classes.
 *
 * @since 1.5
 * @author Doug Lea
*/
public class AtomicInteger extends Number implements java.io.Serializable {
    private static final long serialVersionUID = 6214790243416807050L;

    // setup to use Unsafe.compareAndSwapInt for updates
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
      try {
        valueOffset = unsafe.objectFieldOffset
            (AtomicInteger.class.getDeclaredField("value"));
      } catch (Exception ex) { throw new Error(ex); }
    }

    private volatile int value;

    /**
     * Creates a new AtomicInteger with the given initial value.
     *
     * @param initialValue the initial value
     */
    public AtomicInteger(int initialValue) {
        value = initialValue;
    }

    /**
     * Creates a new AtomicInteger with initial value {@code 0}.
     */
    public AtomicInteger() {
    }

    /**
     * Gets the current value.
     *
     * @return the current value
     */
    public final int get() {
        return value;
    }

    /**
     * Sets to the given value.
     *
     * @param newValue the new value
     */
    public final void set(int newValue) {
        value = newValue;
    }

    /**
     * Eventually sets to the given value.
     *
     * @param newValue the new value
     * @since 1.6
     */
    public final void lazySet(int newValue) {
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }

    /**
     * Atomically sets to the given value and returns the old value.
     *
     * @param newValue the new value
     * @return the previous value
     */
    public final int getAndSet(int newValue) {
        for (;;) {
            int current = get();
            if (compareAndSet(current, newValue))
                return current;
        }
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * @param expect the expected value
     * @param update the new value
     * @return true if successful. False return indicates that
     * the actual value was not equal to the expected value.
     */
    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * <p>May <a href="package-summary.html#Spurious">fail spuriously</a>
     * and does not provide ordering guarantees, so is only rarely an
     * appropriate alternative to {@code compareAndSet}.
     *
     * @param expect the expected value
     * @param update the new value
     * @return true if successful.
     */
    public final boolean weakCompareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    /**
     * Atomically increments by one the current value.
     *
     * @return the previous value
     */
    public final int getAndIncrement() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return current;
        }
    }

    /**
     * Atomically decrements by one the current value.
     *
     * @return the previous value
     */
    public final int getAndDecrement() {
        for (;;) {
            int current = get();
            int next = current - 1;
            if (compareAndSet(current, next))
                return current;
        }
    }

    /**
     * Atomically adds the given value to the current value.
     *
     * @param delta the value to add
     * @return the previous value
     */
    public final int getAndAdd(int delta) {
        for (;;) {
            int current = get();
            int next = current + delta;
            if (compareAndSet(current, next))
                return current;
        }
    }

    /**
     * Atomically increments by one the current value.
     *
     * @return the updated value
     */
    public final int incrementAndGet() {
        for (;;) {
            int current = get();
            int next = current + 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

    /**
     * Atomically decrements by one the current value.
     *
     * @return the updated value
     */
    public final int decrementAndGet() {
        for (;;) {
            int current = get();
            int next = current - 1;
            if (compareAndSet(current, next))
                return next;
        }
    }

    /**
     * Atomically adds the given value to the current value.
     *
     * @param delta the value to add
     * @return the updated value
     */
    public final int addAndGet(int delta) {
        for (;;) {
            int current = get();
            int next = current + delta;
            if (compareAndSet(current, next))
                return next;
        }
    }

    /**
     * Returns the String representation of the current value.
     * @return the String representation of the current value.
     */
    public String toString() {
        return Integer.toString(get());
    }


    public int intValue() {
        return get();
    }

    public long longValue() {
        return (long)get();
    }

    public float floatValue() {
        return (float)get();
    }

    public double doubleValue() {
        return (double)get();
    }

}
View Code

1. CAS

CAS Compare And Swap,顾名思义,比较并交换

一般的形式是cas(pointer, expect, update),其含义为:比较pointer指向的值与expect,如果两者相等,则将pointer指向的值更新为update并返回ture,如果两者不等,返回false

如果有多个线程同时对同一个pointer调用cas函数,那么只有一个线程能成功pointer指向的值并返回true,其他线程都会返回false

也就是说这是一个原子操作,它需要cpu层面的支持,比方说cmpxchg函数

JDK内部实现了CAS操作,但是不对外开放(用反射强行拿当然可以)

 

2. sun.misc.Unsafe

这里我们主要用的是Unsafe提供的CAS功能,提供了如下的代码

    public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5);

    public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

    public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);

native的,估计底层的jni代码会根据运行平台调用对应的汇编码,比方说如果是intel 的x86架构,就cmpxchg走一走

 

3. 实现原理

AtomicInteger内部维护了一个volatile类型的int变量value

value用volatile修饰是为了利用volatile带来的内存可见性语义。

想象一个场景,有两个线程A和B,线程B先修改了value,线程A再去读value。

如果没有volatile修饰,可能B读到的是线程A修改之前的值。但是加上volatile之后,线程A对value的修改一定对B可见,所以B可以读到最新的值。(实现原理是线程A在写入value之后,插入一条storeload内存屏障,对于Intel的x86架构,就是插入一条带lock前缀的空转指令(lock addl $0x0,(%esp)),这个操作会导致线程A所在的core的cache line(其中肯定包含了value)回写到主存,以及使其他core中对应的cache line(其中肯定包含了value)被设为invalid,那么线程B所在的其他core想要读取value的时候,由于cache line被invalid,就只能从主存中取值,这时拿到的值就是线程A更新后最新的值了)

但是volatile的内存可见性语义还不够,同样设想一个场景,两个线程A和B在不同的core上工作,并发对value=0进行自增操作。两个core并发的将value加载到cache line,然后同时将value加载到寄存器中。线程A先对寄存器中的value自增(缓存一致性协议管不到寄存器),得到value=1,然后将其写入cache line,缓存一致性协议工作,将线程B所在的core的对应的cache line设置为invalid。这时线程B再执行,也将寄存器中的value自增,得到value=1,想要写入到cache line,但是对应的cache line已经是invalid了,于是从主存中取最新的value=1加载到cache line中来,然后写入,触发缓存一致性协议,将value=1写回到主存中。最终还是得到value=1的结果。

为了避免这种情况,最简单的想法就是加锁,将value作为临界区,多个线程不能同时操作,但是加锁是一个比较重的操作,比较浪费。

AtomicInteger的做法是volatile配合CAS使用,如果有线程想更新value,那么记下value的当前值expect,以及需要更新到的新值update=expect+1

然后调用cas指令:cas(value, expect, update)

在无竞争的情况下,cas直接更新成功

在有竞争的情况下,可能在执行cas之前,value被其他线程修改成了新值,那么由于cas条件中的expect与value的当前值不等,会导致cas操作失败并返回false,我们检测到cas操作失败,直接重试即可,总有一次能成功的。

 

4. 实现代码

    public final int incrementAndGet() {
        for (;;) {//无限循环
            int current = get();//获取value当前值
            int next = current + 1;//算出value的期望值
            if (compareAndSet(current, next))//尝试cas更新value
                return next;//成功,函数返回
        }//失败,继续cas,总有一次能更新成功的
    }

挑increaseAndGet这一个方法就行了,很有代表性

    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

compareAndSet的实现则是直接调用Unsafe的代码了,native的不好跟

 

 

java.util.concurrent.atomic包里还有其他的一堆class,AtomicLong,AtomReference等,原理都差不多,在此就不赘述了

 

参考文献

聊聊并发(一)深入分析Volatile的实现原理

posted @ 2017-07-07 18:16  qeDVuHG  阅读(459)  评论(0编辑  收藏  举报