JDK7集合框架源码阅读(五) Hashtable
基于版本jdk1.7.0_80
java.util.Hashtable
代码如下
/* * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.util; import java.io.*; /** * This class implements a hash table, which maps keys to values. Any * non-<code>null</code> object can be used as a key or as a value. <p> * * To successfully store and retrieve objects from a hashtable, the * objects used as keys must implement the <code>hashCode</code> * method and the <code>equals</code> method. <p> * * An instance of <code>Hashtable</code> has two parameters that affect its * performance: <i>initial capacity</i> and <i>load factor</i>. The * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the * <i>initial capacity</i> is simply the capacity at the time the hash table * is created. Note that the hash table is <i>open</i>: in the case of a "hash * collision", a single bucket stores multiple entries, which must be searched * sequentially. The <i>load factor</i> is a measure of how full the hash * table is allowed to get before its capacity is automatically increased. * The initial capacity and load factor parameters are merely hints to * the implementation. The exact details as to when and whether the rehash * method is invoked are implementation-dependent.<p> * * Generally, the default load factor (.75) offers a good tradeoff between * time and space costs. Higher values decrease the space overhead but * increase the time cost to look up an entry (which is reflected in most * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p> * * The initial capacity controls a tradeoff between wasted space and the * need for <code>rehash</code> operations, which are time-consuming. * No <code>rehash</code> operations will <i>ever</i> occur if the initial * capacity is greater than the maximum number of entries the * <tt>Hashtable</tt> will contain divided by its load factor. However, * setting the initial capacity too high can waste space.<p> * * If many entries are to be made into a <code>Hashtable</code>, * creating it with a sufficiently large capacity may allow the * entries to be inserted more efficiently than letting it perform * automatic rehashing as needed to grow the table. <p> * * This example creates a hashtable of numbers. It uses the names of * the numbers as keys: * <pre> {@code * Hashtable<String, Integer> numbers * = new Hashtable<String, Integer>(); * numbers.put("one", 1); * numbers.put("two", 2); * numbers.put("three", 3);}</pre> * * <p>To retrieve a number, use the following code: * <pre> {@code * Integer n = numbers.get("two"); * if (n != null) { * System.out.println("two = " + n); * }}</pre> * * <p>The iterators returned by the <tt>iterator</tt> method of the collections * returned by all of this class's "collection view methods" are * <em>fail-fast</em>: if the Hashtable is structurally modified at any time * after the iterator is created, in any way except through the iterator's own * <tt>remove</tt> method, the iterator will throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the future. * The Enumerations returned by Hashtable's keys and elements methods are * <em>not</em> fail-fast. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>As of the Java 2 platform v1.2, this class was retrofitted to * implement the {@link Map} interface, making it a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * * Java Collections Framework</a>. Unlike the new collection * implementations, {@code Hashtable} is synchronized. If a * thread-safe implementation is not needed, it is recommended to use * {@link HashMap} in place of {@code Hashtable}. If a thread-safe * highly-concurrent implementation is desired, then it is recommended * to use {@link java.util.concurrent.ConcurrentHashMap} in place of * {@code Hashtable}. * * @author Arthur van Hoff * @author Josh Bloch * @author Neal Gafter * @see Object#equals(java.lang.Object) * @see Object#hashCode() * @see Hashtable#rehash() * @see Collection * @see Map * @see HashMap * @see TreeMap * @since JDK1.0 */ public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, Cloneable, java.io.Serializable { /** * The hash table data. */ private transient Entry<K,V>[] table; /** * The total number of entries in the hash table. */ private transient int count; /** * The table is rehashed when its size exceeds this threshold. (The * value of this field is (int)(capacity * loadFactor).) * * @serial */ private int threshold; /** * The load factor for the hashtable. * * @serial */ private float loadFactor; /** * The number of times this Hashtable has been structurally modified * Structural modifications are those that change the number of entries in * the Hashtable or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the Hashtable fail-fast. (See ConcurrentModificationException). */ private transient int modCount = 0; /** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = 1421746759512286392L; /** * The default threshold of map capacity above which alternative hashing is * used for String keys. Alternative hashing reduces the incidence of * collisions due to weak hash code calculation for String keys. * <p> * This value may be overridden by defining the system property * {@code jdk.map.althashing.threshold}. A property value of {@code 1} * forces alternative hashing to be used at all times whereas * {@code -1} value ensures that alternative hashing is never used. */ static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE; /** * holds values which can't be initialized until after VM is booted. */ private static class Holder { /** * Table capacity above which to switch to use alternative hashing. */ static final int ALTERNATIVE_HASHING_THRESHOLD; static { String altThreshold = java.security.AccessController.doPrivileged( new sun.security.action.GetPropertyAction( "jdk.map.althashing.threshold")); int threshold; try { threshold = (null != altThreshold) ? Integer.parseInt(altThreshold) : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT; // disable alternative hashing if -1 if (threshold == -1) { threshold = Integer.MAX_VALUE; } if (threshold < 0) { throw new IllegalArgumentException("value must be positive integer."); } } catch(IllegalArgumentException failed) { throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed); } ALTERNATIVE_HASHING_THRESHOLD = threshold; } } /** * A randomizing value associated with this instance that is applied to * hash code of keys to make hash collisions harder to find. */ transient int hashSeed; /** * Initialize the hashing mask value. */ final boolean initHashSeedAsNeeded(int capacity) { boolean currentAltHashing = hashSeed != 0; boolean useAltHashing = sun.misc.VM.isBooted() && (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD); boolean switching = currentAltHashing ^ useAltHashing; if (switching) { hashSeed = useAltHashing ? sun.misc.Hashing.randomHashSeed(this) : 0; } return switching; } private int hash(Object k) { // hashSeed will be zero if alternative hashing is disabled. return hashSeed ^ k.hashCode(); } /** * Constructs a new, empty hashtable with the specified initial * capacity and the specified load factor. * * @param initialCapacity the initial capacity of the hashtable. * @param loadFactor the load factor of the hashtable. * @exception IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive. */ public Hashtable(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0) initialCapacity = 1; this.loadFactor = loadFactor; table = new Entry[initialCapacity]; threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1); initHashSeedAsNeeded(initialCapacity); } /** * Constructs a new, empty hashtable with the specified initial capacity * and default load factor (0.75). * * @param initialCapacity the initial capacity of the hashtable. * @exception IllegalArgumentException if the initial capacity is less * than zero. */ public Hashtable(int initialCapacity) { this(initialCapacity, 0.75f); } /** * Constructs a new, empty hashtable with a default initial capacity (11) * and load factor (0.75). */ public Hashtable() { this(11, 0.75f); } /** * Constructs a new hashtable with the same mappings as the given * Map. The hashtable is created with an initial capacity sufficient to * hold the mappings in the given Map and a default load factor (0.75). * * @param t the map whose mappings are to be placed in this map. * @throws NullPointerException if the specified map is null. * @since 1.2 */ public Hashtable(Map<? extends K, ? extends V> t) { this(Math.max(2*t.size(), 11), 0.75f); putAll(t); } /** * Returns the number of keys in this hashtable. * * @return the number of keys in this hashtable. */ public synchronized int size() { return count; } /** * Tests if this hashtable maps no keys to values. * * @return <code>true</code> if this hashtable maps no keys to values; * <code>false</code> otherwise. */ public synchronized boolean isEmpty() { return count == 0; } /** * Returns an enumeration of the keys in this hashtable. * * @return an enumeration of the keys in this hashtable. * @see Enumeration * @see #elements() * @see #keySet() * @see Map */ public synchronized Enumeration<K> keys() { return this.<K>getEnumeration(KEYS); } /** * Returns an enumeration of the values in this hashtable. * Use the Enumeration methods on the returned object to fetch the elements * sequentially. * * @return an enumeration of the values in this hashtable. * @see java.util.Enumeration * @see #keys() * @see #values() * @see Map */ public synchronized Enumeration<V> elements() { return this.<V>getEnumeration(VALUES); } /** * Tests if some key maps into the specified value in this hashtable. * This operation is more expensive than the {@link #containsKey * containsKey} method. * * <p>Note that this method is identical in functionality to * {@link #containsValue containsValue}, (which is part of the * {@link Map} interface in the collections framework). * * @param value a value to search for * @return <code>true</code> if and only if some key maps to the * <code>value</code> argument in this hashtable as * determined by the <tt>equals</tt> method; * <code>false</code> otherwise. * @exception NullPointerException if the value is <code>null</code> */ public synchronized boolean contains(Object value) { if (value == null) { throw new NullPointerException(); } Entry tab[] = table; for (int i = tab.length ; i-- > 0 ;) { for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) { if (e.value.equals(value)) { return true; } } } return false; } /** * Returns true if this hashtable maps one or more keys to this value. * * <p>Note that this method is identical in functionality to {@link * #contains contains} (which predates the {@link Map} interface). * * @param value value whose presence in this hashtable is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified value * @throws NullPointerException if the value is <code>null</code> * @since 1.2 */ public boolean containsValue(Object value) { return contains(value); } /** * Tests if the specified object is a key in this hashtable. * * @param key possible key * @return <code>true</code> if and only if the specified object * is a key in this hashtable, as determined by the * <tt>equals</tt> method; <code>false</code> otherwise. * @throws NullPointerException if the key is <code>null</code> * @see #contains(Object) */ public synchronized boolean containsKey(Object key) { Entry tab[] = table; int hash = hash(key); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return true; } } return false; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key.equals(k))}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @param key the key whose associated value is to be returned * @return the value to which the specified key is mapped, or * {@code null} if this map contains no mapping for the key * @throws NullPointerException if the specified key is null * @see #put(Object, Object) */ public synchronized V get(Object key) { Entry tab[] = table; int hash = hash(key); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return e.value; } } return null; } /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Increases the capacity of and internally reorganizes this * hashtable, in order to accommodate and access its entries more * efficiently. This method is called automatically when the * number of keys in the hashtable exceeds this hashtable's capacity * and load factor. */ protected void rehash() { int oldCapacity = table.length; Entry<K,V>[] oldMap = table; // overflow-conscious code int newCapacity = (oldCapacity << 1) + 1; if (newCapacity - MAX_ARRAY_SIZE > 0) { if (oldCapacity == MAX_ARRAY_SIZE) // Keep running with MAX_ARRAY_SIZE buckets return; newCapacity = MAX_ARRAY_SIZE; } Entry<K,V>[] newMap = new Entry[newCapacity]; modCount++; threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); boolean rehash = initHashSeedAsNeeded(newCapacity); table = newMap; for (int i = oldCapacity ; i-- > 0 ;) { for (Entry<K,V> old = oldMap[i] ; old != null ; ) { Entry<K,V> e = old; old = old.next; if (rehash) { e.hash = hash(e.key); } int index = (e.hash & 0x7FFFFFFF) % newCapacity; e.next = newMap[index]; newMap[index] = e; } } } /** * Maps the specified <code>key</code> to the specified * <code>value</code> in this hashtable. Neither the key nor the * value can be <code>null</code>. <p> * * The value can be retrieved by calling the <code>get</code> method * with a key that is equal to the original key. * * @param key the hashtable key * @param value the value * @return the previous value of the specified key in this hashtable, * or <code>null</code> if it did not have one * @exception NullPointerException if the key or value is * <code>null</code> * @see Object#equals(Object) * @see #get(Object) */ public synchronized V put(K key, V value) { // Make sure the value is not null if (value == null) { throw new NullPointerException(); } // Makes sure the key is not already in the hashtable. Entry tab[] = table; int hash = hash(key); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { V old = e.value; e.value = value; return old; } } modCount++; if (count >= threshold) { // Rehash the table if the threshold is exceeded rehash(); tab = table; hash = hash(key); index = (hash & 0x7FFFFFFF) % tab.length; } // Creates the new entry. Entry<K,V> e = tab[index]; tab[index] = new Entry<>(hash, key, value, e); count++; return null; } /** * Removes the key (and its corresponding value) from this * hashtable. This method does nothing if the key is not in the hashtable. * * @param key the key that needs to be removed * @return the value to which the key had been mapped in this hashtable, * or <code>null</code> if the key did not have a mapping * @throws NullPointerException if the key is <code>null</code> */ public synchronized V remove(Object key) { Entry tab[] = table; int hash = hash(key); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { modCount++; if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } count--; V oldValue = e.value; e.value = null; return oldValue; } } return null; } /** * Copies all of the mappings from the specified map to this hashtable. * These mappings will replace any mappings that this hashtable had for any * of the keys currently in the specified map. * * @param t mappings to be stored in this map * @throws NullPointerException if the specified map is null * @since 1.2 */ public synchronized void putAll(Map<? extends K, ? extends V> t) { for (Map.Entry<? extends K, ? extends V> e : t.entrySet()) put(e.getKey(), e.getValue()); } /** * Clears this hashtable so that it contains no keys. */ public synchronized void clear() { Entry tab[] = table; modCount++; for (int index = tab.length; --index >= 0; ) tab[index] = null; count = 0; } /** * Creates a shallow copy of this hashtable. All the structure of the * hashtable itself is copied, but the keys and values are not cloned. * This is a relatively expensive operation. * * @return a clone of the hashtable */ public synchronized Object clone() { try { Hashtable<K,V> t = (Hashtable<K,V>) super.clone(); t.table = new Entry[table.length]; for (int i = table.length ; i-- > 0 ; ) { t.table[i] = (table[i] != null) ? (Entry<K,V>) table[i].clone() : null; } t.keySet = null; t.entrySet = null; t.values = null; t.modCount = 0; return t; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } } /** * Returns a string representation of this <tt>Hashtable</tt> object * in the form of a set of entries, enclosed in braces and separated * by the ASCII characters "<tt>, </tt>" (comma and space). Each * entry is rendered as the key, an equals sign <tt>=</tt>, and the * associated element, where the <tt>toString</tt> method is used to * convert the key and element to strings. * * @return a string representation of this hashtable */ public synchronized String toString() { int max = size() - 1; if (max == -1) return "{}"; StringBuilder sb = new StringBuilder(); Iterator<Map.Entry<K,V>> it = entrySet().iterator(); sb.append('{'); for (int i = 0; ; i++) { Map.Entry<K,V> e = it.next(); K key = e.getKey(); V value = e.getValue(); sb.append(key == this ? "(this Map)" : key.toString()); sb.append('='); sb.append(value == this ? "(this Map)" : value.toString()); if (i == max) return sb.append('}').toString(); sb.append(", "); } } private <T> Enumeration<T> getEnumeration(int type) { if (count == 0) { return Collections.emptyEnumeration(); } else { return new Enumerator<>(type, false); } } private <T> Iterator<T> getIterator(int type) { if (count == 0) { return Collections.emptyIterator(); } else { return new Enumerator<>(type, true); } } // Views /** * Each of these fields are initialized to contain an instance of the * appropriate view the first time this view is requested. The views are * stateless, so there's no reason to create more than one of each. */ private transient volatile Set<K> keySet = null; private transient volatile Set<Map.Entry<K,V>> entrySet = null; private transient volatile Collection<V> values = null; /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own <tt>remove</tt> operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> * operations. It does not support the <tt>add</tt> or <tt>addAll</tt> * operations. * * @since 1.2 */ public Set<K> keySet() { if (keySet == null) keySet = Collections.synchronizedSet(new KeySet(), this); return keySet; } private class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return getIterator(KEYS); } public int size() { return count; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return Hashtable.this.remove(o) != null; } public void clear() { Hashtable.this.clear(); } } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own <tt>remove</tt> operation, or through the * <tt>setValue</tt> operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and * <tt>clear</tt> operations. It does not support the * <tt>add</tt> or <tt>addAll</tt> operations. * * @since 1.2 */ public Set<Map.Entry<K,V>> entrySet() { if (entrySet==null) entrySet = Collections.synchronizedSet(new EntrySet(), this); return entrySet; } private class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return getIterator(ENTRIES); } public boolean add(Map.Entry<K,V> o) { return super.add(o); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry)o; Object key = entry.getKey(); Entry[] tab = table; int hash = hash(key); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) if (e.hash==hash && e.equals(entry)) return true; return false; } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> entry = (Map.Entry<K,V>) o; K key = entry.getKey(); Entry[] tab = table; int hash = hash(key); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e.hash==hash && e.equals(entry)) { modCount++; if (prev != null) prev.next = e.next; else tab[index] = e.next; count--; e.value = null; return true; } } return false; } public int size() { return count; } public void clear() { Hashtable.this.clear(); } } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own <tt>remove</tt> operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Collection.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not * support the <tt>add</tt> or <tt>addAll</tt> operations. * * @since 1.2 */ public Collection<V> values() { if (values==null) values = Collections.synchronizedCollection(new ValueCollection(), this); return values; } private class ValueCollection extends AbstractCollection<V> { public Iterator<V> iterator() { return getIterator(VALUES); } public int size() { return count; } public boolean contains(Object o) { return containsValue(o); } public void clear() { Hashtable.this.clear(); } } // Comparison and hashing /** * Compares the specified Object with this Map for equality, * as per the definition in the Map interface. * * @param o object to be compared for equality with this hashtable * @return true if the specified Object is equal to this Map * @see Map#equals(Object) * @since 1.2 */ public synchronized boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Map)) return false; Map<K,V> t = (Map<K,V>) o; if (t.size() != size()) return false; try { Iterator<Map.Entry<K,V>> i = entrySet().iterator(); while (i.hasNext()) { Map.Entry<K,V> e = i.next(); K key = e.getKey(); V value = e.getValue(); if (value == null) { if (!(t.get(key)==null && t.containsKey(key))) return false; } else { if (!value.equals(t.get(key))) return false; } } } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } return true; } /** * Returns the hash code value for this Map as per the definition in the * Map interface. * * @see Map#hashCode() * @since 1.2 */ public synchronized int hashCode() { /* * This code detects the recursion caused by computing the hash code * of a self-referential hash table and prevents the stack overflow * that would otherwise result. This allows certain 1.1-era * applets with self-referential hash tables to work. This code * abuses the loadFactor field to do double-duty as a hashCode * in progress flag, so as not to worsen the space performance. * A negative load factor indicates that hash code computation is * in progress. */ int h = 0; if (count == 0 || loadFactor < 0) return h; // Returns zero loadFactor = -loadFactor; // Mark hashCode computation in progress Entry[] tab = table; for (Entry<K,V> entry : tab) while (entry != null) { h += entry.hashCode(); entry = entry.next; } loadFactor = -loadFactor; // Mark hashCode computation complete return h; } /** * Save the state of the Hashtable to a stream (i.e., serialize it). * * @serialData The <i>capacity</i> of the Hashtable (the length of the * bucket array) is emitted (int), followed by the * <i>size</i> of the Hashtable (the number of key-value * mappings), followed by the key (Object) and value (Object) * for each key-value mapping represented by the Hashtable * The key-value mappings are emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { Entry<K, V> entryStack = null; synchronized (this) { // Write out the length, threshold, loadfactor s.defaultWriteObject(); // Write out length, count of elements s.writeInt(table.length); s.writeInt(count); // Stack copies of the entries in the table for (int index = 0; index < table.length; index++) { Entry<K,V> entry = table[index]; while (entry != null) { entryStack = new Entry<>(0, entry.key, entry.value, entryStack); entry = entry.next; } } } // Write out the key/value objects from the stacked entries while (entryStack != null) { s.writeObject(entryStack.key); s.writeObject(entryStack.value); entryStack = entryStack.next; } } /** * Reconstitute the Hashtable from a stream (i.e., deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the length, threshold, and loadfactor s.defaultReadObject(); // Read the original length of the array and number of elements int origlength = s.readInt(); int elements = s.readInt(); // Compute new size with a bit of room 5% to grow but // no larger than the original size. Make the length // odd if it's large enough, this helps distribute the entries. // Guard against the length ending up zero, that's not valid. int length = (int)(elements * loadFactor) + (elements / 20) + 3; if (length > elements && (length & 1) == 0) length--; if (origlength > 0 && length > origlength) length = origlength; Entry<K,V>[] newTable = new Entry[length]; threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1); count = 0; initHashSeedAsNeeded(length); // Read the number of elements and then all the key/value objects for (; elements > 0; elements--) { K key = (K)s.readObject(); V value = (V)s.readObject(); // synch could be eliminated for performance reconstitutionPut(newTable, key, value); } this.table = newTable; } /** * The put method used by readObject. This is provided because put * is overridable and should not be called in readObject since the * subclass will not yet be initialized. * * <p>This differs from the regular put method in several ways. No * checking for rehashing is necessary since the number of elements * initially in the table is known. The modCount is not incremented * because we are creating a new instance. Also, no return value * is needed. */ private void reconstitutionPut(Entry<K,V>[] tab, K key, V value) throws StreamCorruptedException { if (value == null) { throw new java.io.StreamCorruptedException(); } // Makes sure the key is not already in the hashtable. // This should not happen in deserialized version. int hash = hash(key); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { throw new java.io.StreamCorruptedException(); } } // Creates the new entry. Entry<K,V> e = tab[index]; tab[index] = new Entry<>(hash, key, value, e); count++; } /** * Hashtable bucket collision list entry */ private static class Entry<K,V> implements Map.Entry<K,V> { int hash; final K key; V value; Entry<K,V> next; protected Entry(int hash, K key, V value, Entry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } protected Object clone() { return new Entry<>(hash, key, value, (next==null ? null : (Entry<K,V>) next.clone())); } // Map.Entry Ops public K getKey() { return key; } public V getValue() { return value; } public V setValue(V value) { if (value == null) throw new NullPointerException(); V oldValue = this.value; this.value = value; return oldValue; } public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?,?> e = (Map.Entry)o; return key.equals(e.getKey()) && value.equals(e.getValue()); } public int hashCode() { return (Objects.hashCode(key) ^ Objects.hashCode(value)); } public String toString() { return key.toString()+"="+value.toString(); } } // Types of Enumerations/Iterations private static final int KEYS = 0; private static final int VALUES = 1; private static final int ENTRIES = 2; /** * A hashtable enumerator class. This class implements both the * Enumeration and Iterator interfaces, but individual instances * can be created with the Iterator methods disabled. This is necessary * to avoid unintentionally increasing the capabilities granted a user * by passing an Enumeration. */ private class Enumerator<T> implements Enumeration<T>, Iterator<T> { Entry[] table = Hashtable.this.table; int index = table.length; Entry<K,V> entry = null; Entry<K,V> lastReturned = null; int type; /** * Indicates whether this Enumerator is serving as an Iterator * or an Enumeration. (true -> Iterator). */ boolean iterator; /** * The modCount value that the iterator believes that the backing * Hashtable should have. If this expectation is violated, the iterator * has detected concurrent modification. */ protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) { this.type = type; this.iterator = iterator; } public boolean hasMoreElements() { Entry<K,V> e = entry; int i = index; Entry[] t = table; /* Use locals for faster loop iteration */ while (e == null && i > 0) { e = t[--i]; } entry = e; index = i; return e != null; } public T nextElement() { Entry<K,V> et = entry; int i = index; Entry[] t = table; /* Use locals for faster loop iteration */ while (et == null && i > 0) { et = t[--i]; } entry = et; index = i; if (et != null) { Entry<K,V> e = lastReturned = entry; entry = e.next; return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e); } throw new NoSuchElementException("Hashtable Enumerator"); } // Iterator methods public boolean hasNext() { return hasMoreElements(); } public T next() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); return nextElement(); } public void remove() { if (!iterator) throw new UnsupportedOperationException(); if (lastReturned == null) throw new IllegalStateException("Hashtable Enumerator"); if (modCount != expectedModCount) throw new ConcurrentModificationException(); synchronized(Hashtable.this) { Entry[] tab = Hashtable.this.table; int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e == lastReturned) { modCount++; expectedModCount++; if (prev == null) tab[index] = e.next; else prev.next = e.next; count--; lastReturned = null; return; } } throw new ConcurrentModificationException(); } } } }
之前面试的时候,HashMap与Hashtable的区别基本是必问的,现在正好趁阅读源码的机会过一下
1. 接口分析
Hashtable继承于Dictionary抽象类(与Map接口非常类似,官方文档里已经将其标记为obsolete,并建议使用Map接口作为代替)
Cloneable,java.io.Serializable接口
2. 实现原理
与HashMap基本一致,用链表数组来存储键值对,使用链地址法处理冲突
3. 扩容
newCapacity = (oldCapacity << 1) + 1;
4. 线程安全
所有的public方法都被加上了synchronized关键字,这样就不会出现多线程下的异常问题了
但是在高并发的场景下,性能较低
5. 不支持key为null的情况
put/get方法都没有对key为null的情况做额外处理,因此都会抛出异常
6. 迭代器与ConcurrentModificationException
Hashtable的迭代器也是快速失败的,迭代器在建立之后,如果原Hashtable发生了变动,那么调用迭代器的next等方法就会抛出ConcurrentModificationException
那么总结一下HashMap与Hashtable的区别
1. HashMap继承于Map接口与AbstractMap抽象类,Hashtable继承于一个即将被废弃的Dictionary抽象类
2. HashMap支持key为null的键值对,Hashtable不支持
3. 最重要的一点:HashMap不是线程安全,而Hashtable是线程安全的。(但是Hashtable的实现方式过于粗糙,最好还是使用ConcurrentHashMap为好)
4. HashMap有一个LinkedHashMap的子类,通过这个子类可以非常容易的实现可预期的迭代器操作(跟插入次序保持一致),Hashtable想做到这一点比较困难