[Leetcode] Longest Consecutive Sequence 略详细 (Java)

题目参见这里 https://leetcode.com/problems/longest-consecutive-sequence/

这个题目我感觉很难,看了半天别人写的答案,才明白个所以然。下面的代码是我自己的改编,写的好像很复杂的样子,主要也是为了方便自己理解,耐着性子看完,应该就理解了。

【个人分析】:

    题目难度主要是要求O(N)完成。本来最自然的想法是先排序然后再去扫一遍得到结果,可是这样,明显就是O(NlgN)。怎么样从NlgN 提高到O(N)呢?  ==> 空间换时间,空间从O(1) 变成 O(N)  ==> 变成O(N)的空间的话,首推哈希表  ==> 如果是用哈希表的话,用序列中的数字做 map 中的 key 是比较自然的想法,所以问题就集中到了,用什么来做 map 中的 value 上来。

【代码注释】:

    上面的主线基本只能推进到那里了,剩下的就是对题目本身的挖掘。我在这里用的是类似动态规划里面常用的前缀、后缀的那种思路。新建了一个类 Bound 来作为 map 中的value , (当然可以不用新建类,直接用一个 list 来做。新建一个类是为了写起来清楚)。对于map中的一个值 num, 它对应的value 是Bound, Bound.maxRangeAsLeftBound 是说,到目前为止,以 num 作为一个连续序列的左边界的所有可能中最长的那个,maxRangeAsRighgBound类似的道理。举个例子,如果有 map[3] = {maxRangeAsLeftBound = 2, maxRangeAsRightBound=3}, 那么就是说存在连续序列【3,4】,和连续序列【1,2,3】

   这个算法的精髓,我个人认为,在于只抓一个范围的两头,对于在范围里面的数字置之不理。什么意思? 假设数组是【4,3,1,2】 ,在依次处理完4,3,1之后,我们要处理2,加入2之后,整个数组中,最长的连续序列将变成,【1-4】。此时,我们只需要更新1,和 4在map中对于的value, 而对于3,这个数夹在1-4之间,对于它在map中的value,我们不必再费神去更新。

  为什么? 你想嘛,假设后面出现了一个更长的序列,是以3 作为左边界,即 maxRange = [3,...], 那么让1做这个范围的边界岂不是可以得到一个更长的【1,2,3...]? 同样的道理,如果maxRange = [...3], 那么让4作为这个范围的右边界,范围也会变得更长。所以,我们不会再用到 3 在map 中对应的 value, 所以也就不用再去更新它了。

  正是因为这样,整个算法的复杂度才是O(N), 如果对于任意一个数字,都要去更新range中所有数字对应的value,那么复杂度就会变成平方。

【实际例子】:  int[] nums = {4,1,3,2}, int resultExpected = 4

数组中的数字(num) 左邻数字是否存在 以num作为右边界的最长序列 右邻数字是否存在 以num作为左边界的最长序列 包含该数字的最长连续序列 更新 更新后Map
4 3存在吗?  否 [4] 5存在吗? 否 [4] [4] U [4] = [4] m[4]={l:1,r:1} {4:{l:1,r:1}}
1 0存在吗? 否 [1] 2存在吗?否 [1] [1] U [1] = [1] m[1]={l:1,r:1}

{4:{l:1,r:1}}

{1:{l:1, r:1}}

3 2存在吗?  否 [3]  4存在吗? [3,4] [3] U [3,4] = [3,4] 

m[3]={l:2,r:1}

m[4].r = 2

m[3].l = 2

(3,4是包含3的最大范围的两端边界)

{4: {l: 1, r: 2}}

{1:{l: 1, r: 1}}

{3:{l: 2,r: 1}}  

2 1存在吗? [1,2]  3存在吗?   [2,3,4]  [1,2]U[2,3,4] = [1,2,3,4] 

m[2]={l:3,r:2}

m[4].r = 4

m[1].l = 4

(1,4是包含2的最大范围的两端边界)

{4: {l: 1, r: 4}}

{1:{l:4,r:1}},

{3:{l:2,r:1}},

{2:{l:3,r:2}} 

 

 1 public class Solution {
 2     public int longestConsecutive(int[] nums) {
 3         int result = 0;
 4         Map<Integer, Bound> rangeMap = new HashMap<Integer, Bound>();
 5         
 6         for (int i = 0; i < nums.length; i++) {
 7             int num = nums[i];
 8             if ( !rangeMap.containsKey(num) ) {
 9                 int maxRangeToThisNumber   = 1;
10                 int maxRangeFromThisNumber = 1;
11                 // can this number be a right boundary of a range ? 
12                 if (rangeMap.containsKey(num - 1)) {
13                     maxRangeToThisNumber += rangeMap.get(num - 1).maxRangeAsRightBound;
14                 }
15                 // can this number be a left boundary of a range?
16                 if (rangeMap.containsKey(num + 1)) {
17                     maxRangeFromThisNumber += rangeMap.get(num + 1).maxRangeAsLeftBound;
18                 }
19                 int maxRangeIncludeThisNumber = 
20                         maxRangeToThisNumber + maxRangeFromThisNumber - 1;
21                 
22                 // update range map
23                 Bound bound = new Bound(maxRangeFromThisNumber, maxRangeToThisNumber);
24                 rangeMap.put(num, bound);
25                 
26                 // num is not the right boundary of max range including num
27                 if (maxRangeFromThisNumber != 1) {
28                     // update the range of number at the right bound
29                     int rightEnd = maxRangeFromThisNumber + num - 1;
30                     Bound boundRight = rangeMap.get(rightEnd);
31                     boundRight.maxRangeAsRightBound = maxRangeIncludeThisNumber;
32                     rangeMap.put(rightEnd, boundRight);
33                 }
34                 if (maxRangeToThisNumber != 1) {
35                     int leftEnd = num - maxRangeToThisNumber + 1;
36                     Bound boundLeft = rangeMap.get(leftEnd);
37                     boundLeft.maxRangeAsLeftBound = maxRangeIncludeThisNumber;
38                     rangeMap.put(leftEnd, boundLeft);
39                 }
40                 
41                 // update global max
42                 result = Math.max(result, maxRangeIncludeThisNumber);
43             }
44         }
45         
46         return result;
47     }
48     
49     public class Bound {
50         public int maxRangeAsRightBound = 0;
51         public int maxRangeAsLeftBound = 0;
52         public Bound(int _maxRangeAsLeftBound, int _maxRangeAsRightBound) {
53             maxRangeAsLeftBound = _maxRangeAsLeftBound;
54             maxRangeAsRightBound = _maxRangeAsRightBound;
55         }
56     }
57     
58 }

 

posted @ 2015-04-30 09:42  StevenCooks  阅读(208)  评论(0编辑  收藏  举报