强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces)

强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces)

学习笔记:
Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016

参照

需要了解强化学习的数学符号,先看看这里:

资格迹(Eligibility Traces)

如何理解资格迹

资格迹是一个向量,称为eligibility trace vector。
强化学习是找最优策略\(\pi_*\)
最优策略\(\pi_*\)等价于最优行动\(\pi_*(s)\)
最优行动\(\pi_*(s)\)可以由最优状态价值\(v_*(s)\)(或者最优行动价值\(q_*(s, a)\))决定。
如果把\(v_*(s)\)(或者\(q_*(s, a)\))看成一个函数,因此:强化学习变成了求这个函数。

在近似方法中\(v_*(s)\)(或者\(q_*(s, a)\))表示为近似预测函数\(\hat{v}(s, \theta)\)(或者近似控制函数\(\hat{q}(s, a, \theta)\))。
以近似预测函数\(\hat{v}(s, \theta)\)为例:

\[\hat{v} \doteq \theta^T \phi(s) \]

\(\phi(s)\)可以认为是固定的。它是将状态变成一个计算向量的方法。
因此,求近似预测函数\(\hat{v}(s, \theta)\),就是求解权重向量\(\theta\)
求权重向量\(\theta\)是通过梯度下降的方法。比如:

\[\delta_t = G_t - \hat{v}(S_t, \theta_t) \\ \theta_{t+1} = \theta_t + \alpha \delta_t \nabla \hat{v}(S_t, \theta_t) \]

这里面,有三个元素:\(\alpha, G_t, \nabla \hat{v}(S_t, \theta_t)\)。每个都有自己的优化方法。

  • \(\alpha\)是学习步长
    要控制步长的大小。一般情况下步长是变化的。比如:如果误差\(\delta_t\)变大了,步长要变小。
  • \(G_t\)的计算
    可以通过本章的\(\lambda\) - return方法。
  • \(\nabla \hat{v}(S_t, \theta_t)\)
    可以通过资格迹来优化。资格迹就是优化后的函数微分。
    为什么要优化,原因是在TD算法中\(\hat{v}(S_t, \theta_t)\)是不精确的。
    \(G_t\)也是不精确的。

\(\lambda\) - return

\(\lambda\) - return 提供了一个新的方式来估算\(G_t\),这个新的估值为\(G_t^{\lambda}\)
它是由它后面的所有\(G_t^{(n)}\)的加权平均值。
从下面的公式可以看出,这个方法可以用于连续性任务和情节性任务。

\[G_t^{(n)} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n \hat{v}(S_{t+n}, \theta_{t+n-1}) , \ 0 \le t \le T-n \\ \text{Continuing tasks: } \\ G_t^{\lambda} \doteq (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1}G_t^{(n)} \\ \text{Episodic tasks: } \\ G_t^{\lambda} \doteq (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1}G_t^{(n)} + \lambda^{T-t-1}G_t \\ where \\ \lambda \in [0, 1] \\ (1 - \lambda) \sum_{n=1}^{\infty}\lambda^{n-1} = 1 \\ (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} + \lambda^{T-t-1} = 1 \\ \]

  • 算法描述

Input: the policy \(\pi\) to be evaluated
Input: a differentiable function \(\hat{v} : \mathcal{S} \times \mathbb{R^n} \to \mathbb{R}\)

Initialize value-function weights \(\theta\) arbitrarily (e.g. \(\theta = 0\))
Repeat (for each episode):
  Generate an episode \(S_0, A_0, R_1 ,S_1 ,A_1, \cdots ,R_t ,S_t\) using \(\pi\)
  For \(t = 0, 1, \cdots, T - 1\)
   \(\theta \gets \theta + \alpha [\color{Red}{G_t^{\lambda}} -\hat{v}(S_t, \theta)] \nabla \hat{v}(S_t, \theta)\)

比较下面这个算法(第9章的蒙特卡罗方法),红色是不同之处。

  • 算法描述

Input: the policy \(\pi\) to be evaluated
Input: a differentiable function \(\hat{v} : \mathcal{S} \times \mathbb{R^n} \to \mathbb{R}\)

Initialize value-function weights \(\theta\) arbitrarily (e.g. \(\theta = 0\))
Repeat (for each episode):
  Generate an episode \(S_0, A_0, R_1 ,S_1 ,A_1, \cdots ,R_t ,S_t\) using \(\pi\)
  For \(t = 0, 1, \cdots, T - 1\)
   \(\theta \gets \theta + \alpha [\color{Red}{G_t} -\hat{v}(S_t, \theta)] \nabla \hat{v}(S_t, \theta)\)

可以看出当\(\lambda=1\)的时候,\(\lambda\) - return算法就是蒙特卡罗算法。所以说\(\lambda\) - return算法是蒙特卡罗算法的通用化算法

\(\lambda\)\(\gamma\)一起控制了n步回报\(G_t^{(n)}\)的权重。

TD(\(\lambda\))

\(e_t\) - 第t步资格迹向量(eligibility trace rate)。
资格迹向量是近似价值函数的优化微分值。
其优化的技术称为(backward view)。仔细观察公式可以发现\(e_t\)的算法中包含了以前的微分值。

  • 数学公式

\[e_0 \doteq 0 \\ e_t \doteq \nabla \hat{v}(S_t, \theta_t) + \gamma \lambda e_{t-1} \\ \delta_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \theta_t) - \hat{v}(S_{t}, \theta_t) \\ \theta_{t+1} \doteq \theta_t + \alpha \delta_t e_t \\ where \\ e_t \text{ - eligibility accumulating traces, the estimation differential of } \nabla \hat{v}(S_t, \theta) \\ \delta_t \text{ - the TD error} \\ \theta_t \text{ - the weighted vector in the approximation value function } \hat{v}(S, \theta) \\ \]

  • 算法描述(Semi-gradient TD(\(\lambda\)) for estimating \(\hat{v} \approx v_{\pi}\))
    请参考原书。

On-line Forward View

On-line和off-line的一个区别是off-line的数据是完整的,比如拥有一个情节的所有Return(G)。
这个导致off-line算法不适合on-line的情景,就是说在完成一个情节前,学习不到任何东西。
这个章节要开发一个on-line的算法,首先引入一个概念h。
h(horizon)- 水平线h表示on-line当时可以模拟的数据步骤。\(t < h \le T\)
没有步骤h之后的数据。

  • h-truncated \(\lambda\)-return

\[G_t^{\lambda | h} \doteq (1 - \lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{h-t-1} G_t^{(h-t)}, \ 0 \le t < h \le T \\ \theta_{t+1}^h \doteq \theta_{t}^h \alpha \left [ G_t^{\lambda | h} - \hat{v}(S_t, \theta_t^h) \right ] \nabla \hat{v}(S_t, \theta_t^h) , \ 0 \le t < h \le T \\ \theta_t \doteq \ \theta_t^t \\ where \\ h \text{ - the horizon, we have the n-step returns up to the the horizon, but beyond the horizon there is no data} \]

True on-line TD(\(\lambda\))

\[e_0 \doteq 0 \\ e_t \doteq \gamma \lambda e_{t-1} + (1 - \alpha \gamma \lambda e_{t-1}^T \phi_t) \phi_t \\ \delta_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \theta_t) - \hat{v}(S_{t}, \theta_t) \\ \theta_{t+1} \doteq \theta_t + \alpha \delta_t e_t + \alpha \left ( \theta_t^T \phi_t - \theta_{t-1}^T \phi_t \right ) (e_t - \phi_t) \\ where \\ e_t \text{ - eligibility dutch trace, the estimation differential of } \nabla \hat{v}(S_t, \theta) \\ \delta_t \text{ - the TD error} \\ \theta_t \text{ - the weighted vector in the approximation value function } \hat{v}(s, \theta) \\ \hat{v}(s, \theta) = \theta^T \phi(s) \\ \]

  • 算法描述(True Online TD(\(\lambda\)) for estimating \(\theta^T \phi \approx v_{\pi}\))
    请参考原书。

原书还没有完成,这章先停在这里

posted @ 2017-03-25 14:42  SNYang  阅读(9888)  评论(2编辑  收藏  举报