强化学习读书笔记 - 10 - on-policy控制的近似方法
强化学习读书笔记 - 10 - on-policy控制的近似方法
学习笔记:
Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016
参照
- Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016
- 强化学习读书笔记 - 00 - 术语和数学符号
- 强化学习读书笔记 - 01 - 强化学习的问题
- 强化学习读书笔记 - 02 - 多臂老O虎O机问题
- 强化学习读书笔记 - 03 - 有限马尔科夫决策过程
- 强化学习读书笔记 - 04 - 动态规划
- 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)
- 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)
- 强化学习读书笔记 - 08 - 规划式方法和学习式方法
- 强化学习读书笔记 - 09 - on-policy预测的近似方法
需要了解强化学习的数学符号,先看看这里:
on-policy控制的近似方法
近似控制方法(Control Methods)是求策略的行动状态价值\(q_{\pi}(s, a)\)的近似值\(\hat{q}(s, a, \theta)\)。
半梯度递减的控制Sarsa方法 (Episodic Semi-gradient Sarsa for Control)
Input: a differentiable function \(\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \to \mathbb{R}\)
Initialize value-function weights \(\theta \in \mathbb{R}^n\) arbitrarily (e.g., \(\theta = 0\))
Repeat (for each episode):
\(S, A \gets\) initial state and action of episode (e.g., "\(\epsilon\)-greedy)
Repeat (for each step of episode):
Take action \(A\), observe \(R, S'\)
If \(S'\) is terminal:
\(\theta \gets \theta + \alpha [R - \hat{q}(S, A, \theta)] \nabla \hat{q}(S, A, \theta)\)
Go to next episode
Choose \(A'\) as a function of \(\hat{q}(S', \dot \ , \theta)\) (e.g., \(\epsilon\)-greedy)
\(\theta \gets \theta + \alpha [R + \gamma \hat{q}(S', A', \theta) - \hat{q}(S, A, \theta)] \nabla \hat{q}(S, A, \theta)\)
\(S \gets S'\)
\(A \gets A'\)
多步半梯度递减的控制Sarsa方法 (n-step Semi-gradient Sarsa for Control)
请看原书,不做拗述。
(连续性任务的)平均奖赏
由于打折率(\(\gamma\), the discounting rate)在近似计算中存在一些问题(说是下一章说明问题是什么)。
因此,在连续性任务中引进了平均奖赏(Average Reward)\(\eta(\pi)\):
- 目标回报(= 原奖赏 - 平均奖赏)
- 策略价值
- 策略最优价值
- 时序差分误差
- 半梯度递减Sarsa的平均奖赏版
半梯度递减Sarsa的平均奖赏版(for continuing tasks)
Input: a differentiable function \(\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \to \mathbb{R}\)
Parameters: step sizes \(\alpha, \beta > 0\)Initialize value-function weights \(\theta \in \mathbb{R}^n\) arbitrarily (e.g., \(\theta = 0\))
Initialize average reward estimate \(\bar{R}\) arbitrarily (e.g., \(\bar{R} = 0\))
Initialize state \(S\), and action \(A\)Repeat (for each step):
Take action \(A\), observe \(R, S'\)
Choose \(A'\) as a function of \(\hat{q}(S', \dot \ , \theta)\) (e.g., \(\epsilon\)-greedy)
\(\delta \gets R - \bar{R} + \hat{q}(S', A', \theta) - \hat{q}(S, A, \theta)\)
\(\bar{R} \gets \bar{R} + \beta \delta\)
\(\theta \gets \theta + \alpha \delta \nabla \hat{q}(S, A, \theta)\)
\(S \gets S'\)
\(A \gets A'\)
多步半梯度递减的控制Sarsa方法 - 平均奖赏版(for continuing tasks)
请看原书,不做拗述。
请“推荐”本文!