Spark Streaming资源动态分配和动态控制消费速率
本篇从二个方面讲解:
高级特性:
1、Spark Streaming资源动态分配
2、Spark Streaming动态控制消费速率
原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论。
先讲理论,后面讨论。
为什么要动态资源分配和动态控制速率?
Spark默认是先分配资源,然后计算;粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源;
不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值、低峰值考虑都有大量资源的浪费。
其实当年Spark Streaming参考了Storm的设计思想,在其基础上构建的Spark Streaming2.0x内核有
很大变化,此框架的最大好处就是和兄弟框架联手。我们考虑Spark Streaming资源分配按高峰值分配的话,就会造成预分配资源浪费,尤其
是低峰值造成大量资源浪费。
Spark Streaming本身基于Spark Core的,Spark Core的核心是SparkContext对象,从SparkContext类代码的556行开始,支持资源的动态分配,源码如下:
// Optionally scale number of executors dynamically based on workload. Exposed for testing.
val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) {
logWarning("Dynamic Allocation and num executors both set, thus
dynamic allocation disabled.")
}
_executorAllocationManager =
if (dynamicAllocationEnabled)
{
Some(new ExecutorAllocationManager(this, listenerBus, _conf))
} else {
None
}
_executorAllocationManager.foreach(_.start())
_cleaner =
if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {
Some(new ContextCleaner(this))
} else {
None
}
_cleaner.foreach(_.start())
通过配置参数:spark.dynamicAllocation.enabled看是否需要开启Executor的动态分配:
/**
* Return whether dynamic allocation is enabled in the given conf
* Dynamic allocation and explicitly setting the number of executors are inherently
* incompatible. In environments where dynamic allocation is turned on by default,
* the latter should override the former (SPARK-9092).
*/
def isDynamicAllocationEnabled(conf: SparkConf): Boolean = {
conf.getBoolean("spark.dynamicAllocation.enabled", false) &&
conf.getInt("spark.executor.instances", 0) == 0
}
根据代码发现,你可以在程序运行时不断设置spark.dynamicAllocation.enabled参数的值,如果支持资源动态分配的话就使用ExecutorAllocationManager类:
/**
* An agent that dynamically allocates and removes executors based on the workload.
* The ExecutorAllocationManager maintains a moving target number of executors which is periodically
* synced to the cluster manager. The target starts at a configured initial value and changes with
* the number of pending and running tasks.
* Decreasing the target number of executors happens when the current target is more than needed to
* handle the current load. The target number of executors is always truncated to the number of
* executors that could run all current running and pending tasks at once.
*
* Increasing the target number of executors happens in response to backlogged tasks waiting to be
* scheduled. If the scheduler queue is not drained in N seconds, then new executors are added. If
* the queue persists for another M seconds, then more executors are added and so on. The number
* added in each round increases exponentially from the previous round until an upper bound has been
* reached. The upper bound is based both on a configured property and on the current number of
* running and pending tasks, as described above.
*
* The rationale for the exponential increase is twofold: (1) Executors should be added slowly
* in the beginning in case the number of extra executors needed turns out to be small. Otherwise,
* we may add more executors than we need just to remove them later. (2) Executors should be added
* quickly over time in case the maximum number of executors is very high. Otherwise, it will take
* a long time to ramp up under heavy workloads.
*
* The remove policy is simpler: If an executor has been idle for K seconds, meaning it has not
* been scheduled to run any tasks, then it is removed.
*
* There is no retry logic in either case because we make the assumption that the cluster manager
* will eventually fulfill all requests it receives asynchronously.
*
* The relevant Spark properties include the following:
*
* spark.dynamicAllocation.enabled - Whether this feature is enabled
* spark.dynamicAllocation.minExecutors - Lower bound on the number of executors
* spark.dynamicAllocation.maxExecutors - Upper bound on the number of executors
* spark.dynamicAllocation.initialExecutors - Number of executors to start with
*
* spark.dynamicAllocation.schedulerBacklogTimeout (M) -
* If there are backlogged tasks for this duration, add new executors
*
* spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (N) -
* If the backlog is sustained for this duration, add more executors
* This is used only after the initial backlog timeout is exceeded
*
* spark.dynamicAllocation.executorIdleTimeout (K) -
* If an executor has been idle for this duration, remove it
*/
private[spark] class ExecutorAllocationManager(
client: ExecutorAllocationClient,
listenerBus: LiveListenerBus,
conf: SparkConf)
extends Logging {
allocationManager =>
import ExecutorAllocationManager._
// Lower and upper bounds on the number of executors.
private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0)
private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors",
Integer.MAX_VALUE)
动态控制执行的executors个数。扫描executor情况,正在运行的Stage,增加executor或减少executor个数,例如减少executor情况;例如60秒发现一个任务都没有运行就会remove executor;当前应用程序含有所有启动的executors,在driver保持对executors的引用。
由于时钟,就有不断的循环、就有增加和删除exector的操作。
之所以动态就是有时钟,每隔固定周期看看。需要删除的话发一个kill消息,需要添加的话就往worker发消息增加一个executor。
我们看一下Master的scheduler方法:
/**
* Schedule the currently available resources among waiting apps. This method will be called
* every time a new app joins or resource availability changes.
*/
private def schedule(): Unit = {
if (state != RecoveryState.ALIVE) { return }
// Drivers take strict precedence over executors
val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers
for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) {
for (driver <- waitingDrivers) {
if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
launchDriver(worker, driver)
waitingDrivers -= driver
}
}
}
startExecutorsOnWorkers()
}
需要实现资源动态调度的话需要一个时钟需要协助,资源默认分配的方式在master的scheduler。
如果通过配置动态分配资源会调用ExecutorAllocationManager类的scheduler方法:
/**
* This is called at a fixed interval to regulate the number of pending executor requests
* and number of executors running.
*
* First, adjust our requested executors based on the add time and our current needs.
* Then, if the remove time for an existing executor has expired, kill the executor.
*
* This is factored out into its own method for testing.
*/
private def schedule(): Unit = synchronized {
val now = clock.getTimeMillis
updateAndSyncNumExecutorsTarget(now)
removeTimes.retain { case (executorId, expireTime) =>
val expired = now >= expireTime
if (expired) {
initializing = false
removeExecutor(executorId)
}
!expired
}
}
内部方法会被周期性的触发scheduler,周期性执行。
保持executorId,不断注册executor。
/**
* Register for scheduler callbacks to decide when to add and remove executors, and start
* the scheduling task.
*/
def start(): Unit = {
listenerBus.addListener(listener)
val scheduleTask = new Runnable() {
override def run(): Unit = {
try {
schedule()
} catch {
case ct: ControlThrowable =>
throw ct
case t: Throwable =>
logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t)
}
}
}
executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS)
}
从调整周期角度,batchDuration角度来调整,10秒钟,是增加executor或减少executor,需对数据规模评估,具有资源评估,对已有资源闲置做评估;例如是否决定需要更多的资源,数据在batchDuration流进来就会有数据分片,每个数据分片处理的时候需要跟多的cores,如果不够就需要申请跟多的executors。
Ss提供弹性机制,看下溜进来的速度和处理速度关系,是否来得及处理,来不及处理的话会动态控制数据流入的速度,这里有个控制速率的参数:ss。backpressuareenable参数。
Spark Streaming本身有对rateController控制,在运行时手动控制流入的速度。如果delay,则控制速度,流入慢点,需要调整流入的数据和处理的时间比例关系。