11款开放中文分词引擎大比拼

来自: http://blog.csdn.net/matthewei6/article/details/50610882

在逐渐步入DT(Data Technology)时代的今天,自然语义分析技术越发不可或缺。对于我们每天打交道的中文来说,并没有类似英文空格的边界标志。而理解句子所包含的词语,则是理解汉语语句的第一步。汉语自动分词的任务,通俗地说,就是要由机器在文本中的词与词之间自动加上空格。

一提到自动分词,通常会遇到两种比较典型的质疑。一种质疑是来自外行人的:这件事看上去平凡之极,好像一点儿也不“fancy”,会有什么用呢?另一种质疑则是来自业内:自动分词研究已经进行了数年,而网上也存在各种不同的开放分词系统,但对于实际商用似乎也未见一个“即插即用”的系统。

那么,目前常见的开放分词引擎,到底性能如何呢?为了进行测试,我们调研了11款网上常见的并且公开提供服务的分词系统,包括:

分词的客观量化测试离不开标注数据,即人工所准备的分词“标准答案”。在数据源方面,我们将测试分为:

  1. 新闻数据:140篇,共30517词语;

  2. 微博数据:200篇,共12962词语;

  3. 汽车论坛数据(汽车之家)100篇:共27452词语;

  4. 餐饮点评数据(大众点评):100条,共8295词语。

准确度计算规则:

  1. 将所有标点符号去除,不做比较

  2. 参与测试的部分系统进行了实体识别,可能造成词语认定的不统一。我们将对应位置替换成了人工标注的结果,得到准确率估算的上界。

  3. 经过以上处理,用SIGHAN 分词评分脚本比较得到最终的准确率,召回率和F1值。

以上所有数据采用北大现代汉语基本加工规范对所有数据进行分词作为标准。具体数据下载地址请参见附录。通过这四类数据综合对比不同分词系统的分词准确度。

上图为参与比较的10款分词引擎在不同数据的分词准确度结果。可以看出,在所测试的四个数据集上,BosonNLP和哈工大语言云都取得了较高的分词准确率,尤其在新闻数据上。因为庖丁解牛是将所有可能成词的词语全部扫描出来(例如:“最不满意”分为:“最不 不满 满意”),与其他系统输出规范不同,因而不参与准确率统计。为了更直接的比较不同数据源的差别,我们从每个数据源的测试数据中抽取比较典型的示例进行更直观的对比。

【新闻数据】新闻数据的特点是用词规整,符合语法规则,也是普遍做得比较不错的一个领域。对比其他数据源,有7家系统都在新闻领域达到最高。包括IKAnalyzer、盘古分词、搜狗分词、新浪云、NLPIR、语言云、BosonNLP。并且有三家系统准确率超过90%。

样例:香港 中文 大学 将 来 合肥 一中 进行 招生 宣传 今年 在 皖 招 8 人 万家 热线 安徽 第一 门户

【微博数据】微博数据用词多样、话题广泛,并常包含错别字及网络流行词。能够比较全面的体现每家分词系统的准确度。

样例:补 了 battle 赛 峰暴班 的 两 个 弟弟 妹妹 @杨宝心 @修儿 一个 是 我 很 挺 的 好 弟弟 一个 是 我 推荐 进 好声音 的 妹子 虽然 都 在 battle 阶段 都 下来 了 但是 我 依然 像 之前 那样 觉得 你们 非常 棒

【汽车论坛】汽车数据是针对汽车领域的专业评价数据,会出现很多的专业术语。例如示例中的“胎噪”、“风燥”等,如果系统没有足够强大的训练词库或领域优化,会使准确率有较大程度降低。比较有意思的是,对比其他数据源,有3家系统都在汽车论坛领域达到最高:腾讯文智、SCWS中文分词、结巴分词。

样例:舒适性 胎噪 风噪 偏 大 避震 偏 硬 过 坎 弹跳 明显

【餐饮点评】餐饮点评数据为顾客评论数据,更偏重口语化。会出现很多类似“闺蜜”、“萌萌哒”口语化词语和很多不规范的表达,使分词更加困难。

样例:跟 闺蜜 在 西单 逛街 想 吃 寿司 了 在 西单 没 搜 到 其他 的 日料店 就 来 禾绿 了 我们 俩 都 觉得 没 以前 好 了

各家系统对于多数简单规范的文本的分词已经达到很高的水平。但在仔细对比每一家中文分词后依旧发现切分歧义词和未登陆词(即未在训练数据中出现的词)仍然是影响分词准确度的两大“拦路虎”。1.切分歧义:根据测试数据的切分结果,一类属于机器形式的歧义,在真实语言环境下,只有唯一可能的正确切分结果,称其为伪歧义。另一类有两种以上可实现的切分结果,称为真歧义。由于真歧义数据无法比较正确或者错误。所有我们着重举例来比较各家系统对伪歧义的处理效果。

正确: 在 伦敦 奥运会 上 将 可能 有 一 位 沙特阿拉伯 的 女子

(BosonNLP、新浪云、语言云、NLPIR、腾讯文智)

错误: 在 伦敦 奥运会 上将 可能 有 一 位 沙特阿拉伯 的 女子

(PHP结巴分词、SCWS中文分词、搜狗分词、庖丁解牛)

示例中原意指伦敦奥运会可能有一位沙特阿拉伯的女子,错误分词的意思是指上将(军衔)中有一位是沙特阿拉伯的女子,句意截然不同。当然,分析的层次越深,机器对知识库质量、规模等的依赖性就越强,所需要的时间、空间代价也就越大。

2.未登录词:未登录词大致包含三大类:

a)新涌现的通用词:类似“神马”、“纳尼”、“甩卖”、“玫瑰金”等新思想、新事物所带来的新词汇,不管是文化的、政治的、还是经济的,在人们的生活中不断涌现。同时很多词语也具有一定的时效性。

b)专业术语:是相对日常用语而言的,一般指的某一行业各种名称用语,大多数情况为该领域的专业人士所熟知。这种未登录词理论上是可预期的。能够人工预先添加到词表中(但这也只是理想状态,在真实环境下并不易做到)。

c)专有名词:如中国人名、外国译名、地名、公司名等。这种词语很多基本上不可通过词典覆盖,考验分词系统的新词识别能力。

【新涌现的通用词或专业术语】示例中的蓝色字包括专业术语:“肚腩”、“腹肌”、“腹直肌”、“腹外斜肌”、“腹横肌”;新涌现的通用词:“人鱼线”、“马甲线”。大多数的系统对于示例文本的分词结果都不够理想,例如:“大肚 腩”(SCWS中文分词) “腹 直 肌 腹 外 斜 肌”(搜狗分词、IKAnalyer、NLPIR、SCWS中文分词)、“人 鱼线”(PHP结巴分词)。总的来说这两种类型的数据每家系统都存在一定的缺陷,相对而言哈工大的语言云在这方面表现的较好。

本 季 最 强 家庭 瘦 腰 计划 彻底 告别 大 肚腩 没有 腹肌 的 人生 是 不 完整 的 平面 模特 yanontheway 亲身 示范 的 9 个 动作 彻底 强化 腹直肌 腹外斜肌 腹内斜肌 以及 腹横肌 每个 动作 认真 做 足 50 次 一定 要 坚持 做 完美 的 人鱼线 性感 的 马甲线 都 要 我们 自己 去 争取

【专有名词】示例出现的专有名词包括“蒂莫西伊斯顿”(姓名)、“英国”“意大利”“北欧”(地点)、“金斯敦”(机构名)、“伊丽莎白 格林希尔兹”(机构名)。而这种用词典无法穷尽的专有名词也成为各家分词准确率降低的重要原因。其中搜狗分词、IKAnalyer、PHP结巴分词、腾讯文智、SCWS中文分词在新词识别时较为谨慎,常将这类专有名词切分成多个词语。

油画 英国 画家 蒂莫西伊斯顿 唯美 风 油画 timothy easton 毕业 于 英国 金斯敦 艺术 学院 曾 获伊丽莎白 格林希尔兹 基金会 奖 得以 前往 意大利 和 北欧 学习 一 年 的 机会

当然在分词准确度可以接受的情况下,很多细节问题,包括是否有出错情况、是否支持各种字符、是否标注词性等都可能让我们望而却步。在分词颗粒度选择当中,BosonNLP、SCWS、盘古分词、结巴分词、庖丁解牛都提供了多种选择,可以根据需求来采用不同的分词粒度。与北大的分词标准对比来说,新浪云默认的分词粒度较大,而搜狗分词、腾讯文智分词粒度相对较小。除此之外,BosonNLP、新浪云、NLPIR、腾讯文智同时提供了实体识别、情感分析、新闻分类等其他扩展服务。下表给出了各家系统在应用方面的详细对比。

中文分词是其他中文信息处理的基础,并且在很多领域都有广泛的应用,包括搜索引擎、机器翻译(MT)、语音合成、自动分类、自动摘要、自动校对等等。随着非结构化文本的广泛应用,中文分词等文本处理技术也变得越来越重要。通过评测可以看出,部分开放分词系统在不同领域已经达到较高准确率。对于数据分析处理的从业者,相信在此之上构建数据分析系统、人机交互平台,更能够起到事半功倍的效果。

注意:分词数据准备及评测由BosonNLP完成。

附录

评测数据地址

http://bosonnlp.com/dev/resource

各家分词系统链接地址

BosonNLP: http://bosonnlp.com/dev/center

IKAnalyzer: http://www.oschina.net/p/ikanalyzer

NLPIR: http://ictclas.nlpir.org/docs

SCWS中文分词: http://www.xunsearch.com/scws/docs.php

结巴分词: https://github.com/fxsjy/jieba

盘古分词: http://pangusegment.codeplex.com/

庖丁解牛: https://code.google.com/p/paoding/

搜狗分词: http://www.sogou.com/labs/webservice/

腾讯文智:

http://www.qcloud.com/wiki/API%E8%AF%B4%E6%98%8E%E6%96%87%E6%A1%A3

新浪云: http://www.sinacloud.com/doc/sae/python/segment.html

语言云: http://www.ltp-cloud.com/document

http://www.open-open.com/lib/view/open1454167680870.html

 

 

本文的内容为以下两个部分:
文本分词(jieba)
语料库制作(gensim)
结巴(jieba)分词
在自然语言处理领域中,分词和提取关键词都是对文本处理时通常要进行的步骤。用Python语言对英文文本进行预处理时可选择NLTK库,中文文本预处理可选择jieba库。结巴分词是基于统计的分词方法,它对给出大量已经分词的文本,利用统计机器学习模型学习词语切分的规律(称为训练),从而实现对未知文本的切分。例如最大概率分词方法和最大熵分词方法等。随着大规模语料库的建立,统计机器学习方法的研究和发展,基于统计的中文分词方法渐渐成为了主流方法。

jieba分词的三种模式:
精确模式:将句子最精确的分开,适合文本分析
全模式:句子中所有可以成词的词语都扫描出来,速度快,不能解决歧义
搜索引擎模式:在精确的基础上,对长词再次切分,提高召回
结巴分词的其他特点诸如:支持繁体分词,支持自定义词典,基于Trie树结构实现高效的词图扫描,采用了动态规划查找最大概率路径等特点。

jieba库中分词函数

1、jieba.cut()方法
参数string:需要接受分词的字符串。
参数cut_all:控制是否采用全模式分词发,参数为True时表示采用全模式。
参数HMM:控制是否使用HMM模型,参数为True时表示使用HMM模型。

2、jieba.cut_for_search()
参数string:需要接受分词的字符串。
参数HMM:控制是否使用HMM模型,参数为True时表示使用HMM模型。

jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语。jieba.lcut和jieba.lcut_for_search参数和上面两个方法一致但返回的是一个list。

import jieba
 
string='上海市浦东新区世纪大道100号楼501'
 
#精准模式
text_cut=jieba.cut(string)
print(" ".join(text_cut))
 
#全模式
text_cut=jieba.cut(string,cut_all=True)
print(" ".join(text_cut))
 
#搜索模式
text_cut=jieba.cut_for_search(string)
print(" ".join(text_cut))

三种模式的输出结果:

精准模式:上海市浦东新区 世纪 大道 100 号楼 501

全模式:上海 上海市 上海市浦东新区 海市 浦东 浦东新区 新区 世纪 纪大 大道 100 号 楼 501

搜索引擎模式:上海 海市 浦东 新区 上海市 上海市浦东新区 世纪 大道 100 号楼 501

jieba分词自定义字典
在使用jieba时,用户除了直接对文本进行分词外,还可以自行添加新词,已达到优化分词效果的目的。

1、加载自定义字典jieba.load_userdict()
参数filename:为文件类对象或自定义词典的路径
词典格式分为3个部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。
file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。

2、从字典中添加或删除词汇add_word、del_word
add_word(word,freq=None,tag=None),add_word有3个参数,添加词名称,词频,词性
del_word(word),del_word只有一个参数词语名称

3、词频调整suggest_freq
suggest_freq(segment,tune=True)
调节单个词语的词频,可以使其能(或不能)被分出来,词频越高在分词时,能够被分出来的概率越大。

import jieba
 
#载入自定义词典
jieba.load_userdict('word_dict.txt')
 
#查看用户自定义词典中的内容
print(jieba.user_word_tag_tab)
 
#往自定义词典中添加新词
jieba.add_word('人民广场',freq=5,tag='n')
 
#添加新词后的结果
print(jieba.user_word_tag_tab)
 
string='上海市浦东新区世纪大道100号楼501'
text_cut=jieba.cut(string)
print(" ".join(text_cut))
 
#调整词频,重新分词
jieba.suggest_freq(('上海市','浦东新区'),tune=True)
text_cut=jieba.cut(string)
print(" ".join(text_cut))

输出结果:

载入词典内容:{'世纪大道': 'n', '浦东新区 2 ': 'n', '世纪公园 3 ': 'n'}

添加新词后:{'世纪大道': 'n', '浦东新区 2 ': 'n', '世纪公园 3 ': 'n', '人民广场': 'n'}

结巴原始字典库,分词结果:上海市浦东新区 世纪 大道 100 号楼 501

使用自定义词典后,分词结果:上海市浦东新区 世纪大道 100 号楼 501

调整词频后,分词结果:上海市 浦东新区 世纪大道 100 号楼 501

Gensim
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。
它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法。

相关概念

语料(Corpus):一组原始文本的集合,用于无监督地训练文本主题的隐层结构。在Gensim中,Corpus通常是一个可迭代的对象(比如列表)。每一次迭代返回一个可用于表达文本对象的稀疏向量。
向量(Vector):由一组文本特征构成的列表。是一段文本在Gensim中的内部表达。在向量空间模型中,每个文档被表示成了一组特征,比如,一个单一的特征可能被视为一个问答对。
稀疏向量(SparseVector):通常,大部分问题的答案都是0,为了节约空间,我们会从文档表示中省略他们,向量中的每一个元素是一个(key, value)的元组,比如(1,3),(2,4),(5,0),其中(5,0)是一个稀疏向量,在表示是会被忽略。
模型(Model):是一个抽象的术语。定义了两个向量空间的变换(即从文本的一种向量表达变换为另一种向量表达)。
把几个概念组织起来表述:gensim可以通过读取一段语料,输出一个向量,表示文档中的一个词。为了节约空间,通常稀疏的词向量会被忽略,剩下的词向量则可以用来训练各种模型,即从原有的文本表达转向另一种文本表达。

语料库制作

语料库制作主要包含两个过程:
获取词袋:本文主要来自于结巴分词结果
向量转换:对获取的词袋进行向量转换

1、获取词袋函数 gensim.corpora.Dictionary()
gensim.corpora.dictionary.Dictionary可以为每个出现在语料库中的单词分配了一个独一无二的整数编号id。这个操作收集了单词计数及其他相关的统计信息。

import jieba
import gensim
 
print(jieba.user_word_tag_tab)
string=['上海市浦东新区世纪大道100号楼501','上海市世纪大道100号楼501']
 
texts_list=[]
for sentence in string:
    sentence_list=[ word for word in jieba.cut(sentence)]
    texts_list.append(sentence_list)
 
dictionary=gensim.corpora.Dictionary(texts_list)
print(dictionary)
print(dictionary.token2id)

输出结果:
Dictionary(7 unique tokens: ['100', '501', '上海市浦东新区', '世纪', '号楼']...)
{'100': 0, '501': 1, '上海市浦东新区': 2, '世纪': 3, '号楼': 4, '大道': 5, '上海市': 6}

第一行结果告诉我们语料库中有7个不同的单词,这表明每个文档将会用7个数字表示(即7维向量)。
第二行结果是查看单词与编号之间的映射关系。

2、向量转换 dictionary.doc2bow()

函数doc2bow() 简单地对每个不同单词的出现次数进行了计数,并将单词转换为其编号,然后以稀疏向量的形式返回结果。

corpus = [dictionary.doc2bow(doc) for doc in texts_list]
print(corpus)

输出结果:
[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)], [(0, 1), (1, 1), (3, 1), (4, 1), (5, 1), (6, 1)]]

以上结果中,表示两个字符串中,每个词的id以及它对应的出现频次,比如第一个元组(0,1)代表的是编号为0的词在第一个字符串中出现一次。

相关资源:中文语料库中文语料库中文语料库
https://blog.csdn.net/weixin_36160690/article/details/112201989

 

 

 

 

 

 

 

 

posted @ 2016-10-20 17:54  沧海一滴  阅读(5618)  评论(0编辑  收藏  举报