Hadoop2源码分析-RPC机制初识
1.概述
上一篇博客,讲述Hadoop V2的序列化机制,这为我们学习Hadoop V2的RPC机制奠定了基础。RPC的内容涵盖的信息有点多,包含Hadoop的序列化机制,RPC,代理,NIO等。若对Hadoop序列化不了解的同学,可以参考《Hadoop2源码分析-序列化篇》。今天这篇博客为大家介绍的内容目录如下:
- RPC概述
- 第三方RPC
- Hadoop V2的RPC简述
那么,下面开始今天的学习之路。
2.RPC概述
首先,我们要弄明白,什么是RPC?RPC能用来做什么?
2.1什么是RPC
RPC的全程是Remote Procedure Call,中文释为远程过程调用。也就是说,调用的过程代码(业务服务代码)并不在调用者本地运行,而是要实现调用着和被调用着之间的连接通信,有同学可能已经发现,这个和C/S模式很像。没错,RPC的基础通信模式是基于C/S进程间相互通信的模式来实现的,它对Client端提供远程接口服务,其RPC原理图如下所示:
2.2RPC的功能
我们都知道,在过去的编程概念中,过程是由开发人员在本地编译完成的,并且只能局限在本地运行的某一段代码,即主程序和过程程序是一种本地调用关系。因此,这种结构在如今网络飞速发展的情况下已无法适应实际的业务需求。而且,传统过程调用模式无法充分利用网络上其他主机的资源,如CPU,内存等,也无法提高代码在Bean之间的共享,使得资源浪费较大。
而RPC的出现,正好有效的解决了传统过程中存在的这些不足。通过RPC,我们可以充分利用非共享内存的机器,可以简便的将应用分布在多台机器上,类似集群分布。这样方便的实现过程代码共享,提高系统资源的利用率。减少单个集群的压力,实现负载均衡。
3.第三方RPC
在学习Hadoop V2的RPC机制之前,我们先来熟悉第三方的RPC机制是如何工作的,下面我以Thrift框架为例子。
Thrift是一个软件框架,用来进行可扩展且跨语言的服务开发协议。它拥有强大的代码生成引擎,支持C++,Java,Python,PHP,Ruby等编程语言。Thrift允许定义一个简单的定义文件(以.thirft结尾),文件中包含数据类型和服务接口。用以作为输入文件,编译器生成代码用来方便的生成RPC客户端和服务端通信的编程语言。具体Thrift安装过程请参考《Mac OS X 下搭建thrift环境》。
3.1Thrift原理图
下面给出Thrift的原理图,如下所示:
下面为大家解释一下上面的原理图,首先,我们编译完thrift定义文件后(这里我使用的是Java语言),会生成对应的Java类文件,该类的Iface接口定义了我们所规范的接口函数。在服务端,实现Iface接口,编写对应函数下的业务逻辑,启动服务。客户端同样需要生成的Java类文件,以供Client端调用相应的接口函数,监听服务端的IP和PORT来获取连接对象。
3.2代码示例
- Server端代码:
package cn.rpc.main; import org.apache.thrift.TProcessorFactory; import org.apache.thrift.protocol.TCompactProtocol; import org.apache.thrift.server.THsHaServer; import org.apache.thrift.server.TServer; import org.apache.thrift.transport.TFramedTransport; import org.apache.thrift.transport.TNonblockingServerSocket; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import cn.rpc.service.StatQueryService; import cn.rpc.service.impl.StatQueryServiceImpl; /** * @Date Mar 23, 2015 * * @Author dengjie */ public class StatsServer { private static Logger logger = LoggerFactory.getLogger(StatsServer.class); private final int PORT = 9090; @SuppressWarnings({ "rawtypes", "unchecked" }) private void start() { try { TNonblockingServerSocket socket = new TNonblockingServerSocket(PORT); final StatQueryService.Processor processor = new StatQueryService.Processor(new StatQueryServiceImpl()); THsHaServer.Args arg = new THsHaServer.Args(socket); /* * Binary coded format efficient, intensive data transmission, The * use of non blocking mode of transmission, according to the size * of the block, similar to the Java of NIO */ arg.protocolFactory(new TCompactProtocol.Factory()); arg.transportFactory(new TFramedTransport.Factory()); arg.processorFactory(new TProcessorFactory(processor)); TServer server = new THsHaServer(arg); server.serve(); } catch (Exception ex) { ex.printStackTrace(); } } public static void main(String[] args) { try { logger.info("start thrift server..."); StatsServer stats = new StatsServer(); stats.start(); } catch (Exception ex) { ex.printStackTrace(); logger.error(String.format("run thrift server has error,msg is %s", ex.getMessage())); } } }
- Client端代码:
package cn.rpc.test; import java.util.Map; import org.apache.thrift.protocol.TCompactProtocol; import org.apache.thrift.protocol.TProtocol; import org.apache.thrift.transport.TFramedTransport; import org.apache.thrift.transport.TSocket; import org.apache.thrift.transport.TTransport; import cn.rpc.service.StatQueryService; /** * @Date Mar 23, 2015 * * @Author dengjie * * @Note Test thrift client */ public class StatsClient { public static final String ADDRESS = "127.0.0.1"; public static final int PORT = 9090; public static final int TIMEOUT = 30000; public static void main(String[] args) { if (args.length < 4) { System.out.println("args length must >= 4,current length is " + args.length); System.out.println("<info>****************</info>"); System.out.println("ADDRESS,beginDate,endDate,kpiCode,..."); System.out.println("<info>****************</info>"); return; } TTransport transport = new TFramedTransport(new TSocket(args[0], PORT, TIMEOUT)); TProtocol protocol = new TCompactProtocol(transport); StatQueryService.Client client = new StatQueryService.Client(protocol); String beginDate = args[1]; // "20150308" String endDate = args[2]; // "20150312" String kpiCode = args[3]; // "login_times" String userName = ""; int areaId = 0; String type = ""; String fashion = ""; try { transport.open(); Map<String, String> map = client.queryConditionDayKPI(beginDate, endDate, kpiCode, userName, areaId, type, fashion); System.out.println(map.toString()); } catch (Exception e) { e.printStackTrace(); } finally { transport.close(); } } }
- StatQueryService类:
这个类的代码量太大,暂不贴出。需要的同学请到以下地址下载。
下载地址:git@gitlab.com:dengjie/Resource.git
- StatQueryServiceImpl类:
下面实现其中一个函数的内容,代码如下所示:
package cn.rpc.service.impl; import java.util.HashMap; import java.util.List; import java.util.Map; import org.apache.thrift.TException; import cn.rpc.conf.ConfigureAPI; import cn.rpc.dao.KpiDao; import cn.rpc.domain.ReportParam; import cn.rpc.domain.ReportResult; import cn.rpc.service.StatQueryService; import cn.rpc.util.MapperFactory; /** * @Date Mar 23, 2015 * * @Author dengjie */ public class StatQueryServiceImpl implements StatQueryService.Iface { public Map<String, String> queryDayKPI(String beginDate, String endDate, String kpiCode) throws TException { return null; } public Map<String, String> queryConditionDayKPI(String beginDate, String endDate, String kpiCode, String userName, int areaId, String type, String fashion) throws TException { Map<String, String> res = new HashMap<String, String>(); ReportParam param = new ReportParam(); param.setBeginDate(beginDate + ""); param.setEndDate(endDate + ""); param.setKpiCode(kpiCode); param.setUserName(userName == "" ? null : userName); param.setDistrictId(areaId < 0 ? 0 : areaId); param.setProductStyle(fashion == "" ? null : fashion); param.setCustomerProperty(type == "" ? null : type); List<ReportResult> chart = ((KpiDao) MapperFactory.createMapper(KpiDao.class)).getChartAmount(param); Map<String, Integer> title = ((KpiDao) MapperFactory.createMapper(KpiDao.class)).getTitleAmount(param); List<Map<String, Integer>> tableAmount = ((KpiDao) MapperFactory.createMapper(KpiDao.class)) .getTableAmount(param); String avgTime = kpiCode.split("_")[0]; param.setKpiCode(avgTime + "_avg_time"); List<Map<String, Integer>> tableAvgTime = ((KpiDao) MapperFactory.createMapper(KpiDao.class)) .getTableAmount(param); res.put(ConfigureAPI.RESMAPKEY.CHART, chart.toString()); res.put(ConfigureAPI.RESMAPKEY.TITLE, title.toString()); res.put(ConfigureAPI.RESMAPKEY.TABLEAMOUNT, tableAmount.toString()); res.put(ConfigureAPI.RESMAPKEY.TABLEAVG, tableAvgTime.toString()); return res; } public Map<String, String> queryDetail(String beginDate, String endDate, String userName) throws TException { // TODO Auto-generated method stub return null; } }
4.Hadoop V2的RPC简述
Hadoop V2中的RPC采用的是自己独立开发的协议,其核心内容包含服务端,客户端,交互协议。源码内容都在hadoop-common-project项目的org.apache.hadoop.ipc包下面。
- VersionedProtocol类:
package org.apache.hadoop.ipc; import java.io.IOException; /** * Superclass of all protocols that use Hadoop RPC. * Subclasses of this interface are also supposed to have * a static final long versionID field. */ public interface VersionedProtocol { /** * Return protocol version corresponding to protocol interface. * @param protocol The classname of the protocol interface * @param clientVersion The version of the protocol that the client speaks * @return the version that the server will speak * @throws IOException if any IO error occurs */ public long getProtocolVersion(String protocol, long clientVersion) throws IOException; /** * Return protocol version corresponding to protocol interface. * @param protocol The classname of the protocol interface * @param clientVersion The version of the protocol that the client speaks * @param clientMethodsHash the hashcode of client protocol methods * @return the server protocol signature containing its version and * a list of its supported methods * @see ProtocolSignature#getProtocolSignature(VersionedProtocol, String, * long, int) for a default implementation */ public ProtocolSignature getProtocolSignature(String protocol, long clientVersion, int clientMethodsHash) throws IOException; }
该类中的两个方法一个是作为版本,另一个作为签名用。
- RPC下的Server类:
/** An RPC Server. */ public abstract static class Server extends org.apache.hadoop.ipc.Server { boolean verbose; static String classNameBase(String className) { String[] names = className.split("\\.", -1); if (names == null || names.length == 0) { return className; } return names[names.length-1]; }
对外提供服务,处理Client端的请求,并返回处理结果。
至于Client端,监听Server端的IP和PORT,封装请求数据,并接受Response。
5.总结
这篇博客赘述了RPC的相关内容,让大家先熟悉一下RPC的相关机制和流程,并简述了Hadoop V2的RPC机制,关于Hadoop V2的RPC详细内容会在下一篇博客中给大家分享。这里只是让大家先对Hadoop V2的RPC机制有个初步的认识。
6.结束语
这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!
邮箱:smartloli.org@gmail.com
QQ群(Hive与AI实战【新群】):935396818
QQ群(Hadoop - 交流社区1):424769183
QQ群(Kafka并不难学):825943084
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢!