1:有一个数列,它由3个数列复合而成,并升序排列。三个数列分别是2的n次,3的n次,5的n次,0 <= n < 无穷大
给出前几项:1,2,3,4,5,8,9,16,25,27………………即2^0(3^0, 5^0) , 2^1, 3^1, 2^2, 5^1, 2^3, 3^2, 4^2, 5^2, 3^3 。 。 。
问你如何快速得到第1000个数的值。。。。
问题 1 思考扩展: 假设是第1000,000,000项呢?
2:用C语言写一个函数,将字符串按空格拆分。比如 Hello, Welcome to forget-wind's blog. 拆分成"Hello," , "Welcome", "to",
"forget-wind's", "blog."5个串。
第一题:
我的思路如下:
首先,考虑到数列的指数表现形式,第1000个数必定是一个大数,做大数运算的龟速必然不能快速求得结果,所以必须避开大数运算。
然后,要求的是数列的第1000个数,如果避开大数运算,则O(1000)的复杂度也是满足题目要求的。
考虑到这两点,问题就可以转换为:如何比较以指数形式表示的两个数的大小?(如2^i 与 3^j 比较大小)。
(⊙_⊙)既然不可以直接比较,那就只能想法去掉指数次幂,所以. . .两边同时取对数就可以了。。。
化简一下:2^i 与 3^j 的比较
i 与 log2 (3) * j 的比较 (以2为底3的对数)-------- i 与 lg 3 / lg 2 * j -------- i * lg2 与 j * lg3。
用C++代码实现了一下,如下:
#include <iostream> #include <cstdio> #include <cmath> using namespace std; struct Node { int base; int exp; Node (int base, int exp) { this->base = base; this->exp = exp; } }; Node* Min(Node *a, Node *b) { if (a->exp * log(a->base) > b->exp * log(b->base)) { return b; } return a; } Node* Min(Node *a, Node *b, Node *c) { Node *min = Min(a, b); return Min(min, c); } int main() { Node *a = new Node(2, 0); Node *b = new Node(3, 1); Node *c = new Node(5, 1); Node *min = NULL; for (int t = 1; t <= 1000; t++) { min = Min(a, b, c); min->exp++; } cout << "The 1000th number is : " << endl; cout << "base: " << min->base << endl; cout << "exp" << " : " << min->exp - 1 << endl << endl; delete a; a = 0 ; delete b; b = 0; delete c; c = 0; return 0; }
问题一扩充:假设面试官要你求的不是数列的第1000个,而是... ... 第1000,000,000个数呢?
那么O(n)的复杂度则显得有点力不从心了。
还好,某龙大神说了一句:
二分枚举2的倍数,然后去找3,5的比枚举小的(这里是O(log(n)) --------- log(n)*log(n)的复杂度
有想法了么?
龙神一句话,顿悟了。
1: 问题求的是数列中的第len个数。
因为数列是有2^n, 3^n, 5^n 符合而成, 所以第len个数必然可以以2^n, 3^n, 5^n 其中之一的形式表示。
我们可以转换为 求 2^i <= 第len个数,求满足条件的最大的 i 。
同理:也可以求 3^j <= 第len个数, 求满足条件的最大的 j, 同理最大的k 。
(因为数列的构造性质,上诉必然有一个可以取得 等于号,即确定了第len个数的值。)
------------问题转换为怎样求这个 i 的最大值。
2:假设一直数列中某个数为2^i 次方,那么它是数列中的第几个数呢? 正因为有序性,我们可以在log(n)内确定这个值。
即求满足 3^j < 2^i (此时 i 值确定)时 j 的最大值。----- 二分 j 就可以了。
同理, 二分 k 求得满足条件的k的最大值。 此时就求得 2^i 是数列的第 i + j + k +1个数(1是因为 0 次方)。
然后 1 中要求2^i <= 第len个数时 i 的最值,因为数列是复合有序的,所以 i 增大时,j 增大(3^j < 2^i ),k 增大,
i + j + k + 1的值也随之增大。
则有 2^i <= 第len个数时 i 的最值 等价于 i + j + k + 1 <= len时 i 的最值。 也因此可以通过二分 i 求解。
下面是log(n) * log(n)算法-我的C++实现:
#include <iostream> #include <cstdlib> #include <cmath> using namespace std; struct Node { //指数形式存贮一个数 int base; //基数域 int exp; //指数域 Node () : base(2), exp(0) {} Node (int base, int exp) { this->base = base; this->exp = exp; } }; Node *Min(Node *a, Node *b) { /*返回用指数表示的两个数中较小的那个数的指针*/ if (a->exp * log(a->base) > b->exp * log(b->base)) { return b; } return a; } Node *Min(Node *a, Node *b, Node *c) { /*返回用指数表示的三个数中最小的那个数的指针*/ Node *min = Min(a, b); return Min(min, c); } int Binary_Search(int base, int len, Node *a, Node *b) { int low = 1, high = len;/* /*b值确定的情况下,求一个用指数形式表示的数a, 满足(a->base)^(a->exp) < b,使得a最大,返回数a的指数域(a->exp)*/ while (low <= high) { int mid = (low + high) >> 1; a->base = base; a->exp = mid; Node *min = Min(a, b); if (min->base == a->base) { low = mid + 1; } else { high = mid - 1; } } return low - 1; } int Binary_Solve(int base0, int base1, int base2, int len, int &ans) { //求满足条件“base0^t <= 第len个数”下, t的最大值,t值用引用值ans返回。 int low = 0, high = len; Node *p = new Node; Node *q = new Node(base0, 0); int mid = 0, m = 0, n = 0; int ret = 0; while (low <= high) { mid = (low + high) >> 1; q->exp = mid; m = Binary_Search(base1, len, p, q); n = Binary_Search(base2, len, p, q); if (mid + m + n + 1 <= len) { low = mid + 1; ret = low + m + n; } else { high = mid - 1; } } ans = low - 1; delete p; p = 0; delete q; q = 0; //ret表示base0^t次是数列中的第ret个数 return ret; } int main() { int n, ans; cout << "Enter the index of the number: "; while (cin >> n) { cout << "The " << n << "th number is : " << endl; if (Binary_Solve(2, 3, 5, n, ans) == n) { cout << "base: " << 2 << endl; } else if (Binary_Solve(3, 5, 2, n, ans) == n) { cout << "base: " << 3 << endl; } else if (Binary_Solve(5, 2, 3, n, ans) == n) { cout << "base: " << 5 << endl; } cout << "exp" << " : " << ans << endl << endl << endl; system("pause"); system("cls"); cout << "Enter the index of the number: "; } return 0; }
------------------------------------------------------------------------------------------------------
Update: 根据 lzyzizi ,owlish ,assiwe, 徐少侠等园友的讨论,对第一题进行了优化。
/* 同时感谢园友们不吝提供的高效算法 ---- O(1)实现。 总结如下 : a. 对于求3^j < 2^i( i 确定时) 求 j 的最大值,不需要进行二分查找,两边取对数再取整即可。 ------ 即 j = (int)(i * log3(2) ). ------ 我们根据3 = 2^a; 5 = 2^b; (即 a = log2(3), b = log2(5) ) 可以得到 j = (int)(i / a); k = (int)(i / b); b. 由a的结论可知,假设第 m 项是2^i 次方, 则 m == i + j + k + 1 = i + (int)(i / a) + (int)(i / b) + 1; c. 又因为 ( i / a - 1 ) < [i / a] < (i / a) ---- 因为 i 是整数, 所以 i / a 必是小数, 因此[i / a] <= (i / a)取不到等号。 即得到 i + ( i / a - 1 ) + ( i / b - 1 ) + 1 < m < i + ( i / a ) + ( i / b ) +1; (1是以为0次方。) 令n = m - 1; 化简不等式, 即可得到 i 的上下界。 即 (a * b * n) / (a * b + a + b) < i < (a * b * n + 2 * a * b) / (a * b + a + b); 得到了上下界的差值为: (2 * a * b) / (a * b + a + b)) < (2 * a * b) / (a * b) = 2。 d. 因此可以用尝试法,假定第 m 项分别是以2, 3, 5为底得情况,则此时根据枚举的三种情况。 ( 即a = log2(3) || a = log3(2) || a = log5(2)) ) ----- 推得上下界得差值 (2 * a * b) / (a * b + a + b)),根据底数不同,可以取三种值。 但三种情况下其值都 < 1; ----- 上下界差值 < 1,即 i 值可以唯一确定。(即假定第 m 项是2^i, 则 i = ceil (a * b * n) / (a * b + a + b) ); (pass:但仅限于底数是2,3,5时, i 值唯一确定, 否则可以从上下界之间去找(其也只有两种取值))。 ---推论:任意三个两两互质的数列,都可用以上方法求解,其上下界差值不超过2; 我的程序跑出来的数据。 第1000项为:2^485; 第1000000000想为: 2^485058662。 */
一次二分算法实现:
1:根据总结中 a,内部第二个二分显得多余,j = (int)(i / a); k = (int)(i / b);可直接确定。
2:一次二分的复杂度为O(log(n)),不及O(1)算法,之所以保留。
因为,少掉内层的二分,则算法还算简单且复杂度尚可,还有就是,对于我这种数学盲,可以不需要去求解数学不等式。
#include <iostream> #include <cstdlib> #include <cmath> using namespace std; int getValueK(int base0, int base1, int base2, int n) { int low = 0, high = n; int ret = 0, mid = 0, exp1 = 0, exp2 = 0; double a = log(base1) / log(base0); double b = log(base2) / log(base0); while (low <= high) { mid = (low + high) >> 1; exp1 = (int)(mid / a); exp2 = (int)(mid / b); if (mid + exp1 + exp2 + 1<= n) { low = mid + 1; ret = low + exp1 + exp2; } else { high = mid - 1; } } if (ret == n) return (low - 1); return -1; } void get_nth(int n) { int k = 0; if ( (k = getValueK(2, 3, 5, n)) != -1 ) { cout << "base: " << 2 << endl; } else if ( (k = getValueK(3, 2, 5, n)) != -1 ) { cout << "base: " << 3 << endl; } else if ( (k = getValueK(5, 2, 3, n)) != -1 ) { cout << "base: " << 5 << endl; } cout << "exp : " << k << endl << endl; } int main() { int n; cout << "Enter the index of the number: "; while (cin >> n) { get_nth(n); cout << "Enter the index of the number: "; } return 0; }
以下是O(1)算法的C++实现:
#include <iostream> #include <cstdlib> #include <cmath> #include <cstdio> using namespace std; int getValueK(int base0, int base1, int base2, int n) { n--; double a = log(base1) / log(base0); double b = log(base2) / log(base0); int k = (int)ceil( a * b * n / (a * b + a + b) ); if (k + (int)(k / a) + (int)(k / b) == n) { return k; } return -1; } void get_nth(int n) { int k = 0; if ( (k = getValueK(2, 3, 5, n)) != -1 ) { cout << "base: " << 2 << endl; } else if ( (k = getValueK(3, 2, 5, n)) != -1 ) { cout << "base: " << 3 << endl; } else if ( (k = getValueK(5, 2, 3, n)) != -1 ) { cout << "base: " << 5 << endl; } cout << "exp : " << k << endl << endl; } int main() { int n; cout << "Enter the index of the number: "; while (cin >> n) { get_nth(n); cout << "Enter the index of the number: "; } return 0; }
第二题:
不在于考察你实现的速度和功能,而在于考察代码质量。
空格拆分?=。= 这个简单。 -------- 我传一个二维数组进去,把字符串拆分后依次保存在这个二维数组中不就行了么?
我的想法是:
既然二维数组的大小不好控制,那么,动态分配空间是可以解决这个问题的。
(由于以前做acm不常用指针,甚至是避免用指针 ---- 因为在有限的时间里,侧重于追求代码的高效性和稳定性(指针用的不熟很容易造成程序崩溃)。
--- 这样分析一下,这大概也就是我去面试的同学挂在这道题的内因吧。)
我的具体做法:
建立存储结构如下,用链表实现:
struct Node { char *ch; //指向字符串按' '拆分的各首字符指针 struct Node *next; //下一个结点 };
则函数传参时只需要传递链表的头结点。
if (str[i] 为拆分后单词的首字符) {
在表尾建立新结点,并让其ch域指向单词首字符的地址;
让指针指向表尾结点。
}
这样就避免了如,二维数组大小是多少那样的不确定性问题。
以下是我的C语言实现:
#include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct Node { char *ch; struct Node *next; }Node, *PNode; void calWord(PNode head, char str[], int lstr) { PNode p = head; int i; if (lstr > 0 && str[0] != ' ') { p->next = (PNode)malloc(sizeof(Node)); p = p->next; p->ch = &str[0]; p->next = NULL; } for (i = 0; i < lstr; i++) { if (' ' == str[i]) str[i] = 0; } for (i = 1; i < lstr; i++) { if (0 == str[i-1] && str[i] != 0) { p->next = (PNode)malloc(sizeof(Node)); p = p->next; p->ch = &str[i]; p->next = NULL; } } p = head; } void del(PNode p) { while (p->next != NULL) { PNode q = p; p = p->next; free(q); } free(p); } int main() { char str[] = "Hello, Welcome to forget-wind's blog."; PNode p = (PNode)malloc(sizeof(Node)); int len = strlen(str); p->next = NULL; calWord(p, str, len); while (p->next != NULL) { p = p->next; printf("%s\n", p->ch); } del(p); return 0; }
虽然没去面试,但总结一下前人的经验还是有好处的吧。。。
原创文章如转载请注明:转自¥忘%风 {http://www.cnblogs.com/slave_wc}
本文地址: 两道TB面试题