概要
前面分别介绍红黑树的理论知识和红黑树的C语言实现。本章是红黑树的C++实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章。
目录
1. 红黑树的介绍
2. 红黑树的C++实现(代码说明)
3. 红黑树的C++实现(完整源码)
4. 红黑树的C++测试程序
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3624291.html
更多内容:数据结构与算法系列 目录
(01) 红黑树(一)之 原理和算法详细介绍
(02) 红黑树(二)之 C语言的实现
(03) 红黑树(三)之 Linux内核中红黑树的经典实现
(04) 红黑树(四)之 C++的实现
(05) 红黑树(五)之 Java的实现
(06) 红黑树(六)之 参考资料
红黑树的介绍
红黑树(Red-Black Tree,简称R-B Tree),它一种特殊的二叉查找树。
红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点所包含的键值,大于等于左孩子的键值,小于等于右孩子的键值。
除了具备该特性之外,红黑树还包括许多额外的信息。
红黑树的每个节点上都有存储位表示节点的颜色,颜色是红(Red)或黑(Black)。
红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
关于它的特性,需要注意的是:
第一,特性(3)中的叶子节点,是只为空(NIL或null)的节点。
第二,特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。
红黑树示意图如下:
红黑树的C++实现(代码说明)
红黑树的基本操作是添加、删除和旋转。在对红黑树进行添加或删除后,会用到旋转方法。为什么呢?道理很简单,添加或删除红黑树中的节点之后,红黑树就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。而通过旋转,可以使这颗树重新成为红黑树。简单点说,旋转的目的是让树保持红黑树的特性。
旋转包括两种:左旋 和 右旋。下面分别对红黑树的基本操作进行介绍。
1. 基本定义
enum RBTColor{RED, BLACK}; template <class T> class RBTNode{ public: RBTColor color; // 颜色 T key; // 关键字(键值) RBTNode *left; // 左孩子 RBTNode *right; // 右孩子 RBTNode *parent; // 父结点 RBTNode(T value, RBTColor c, RBTNode *p, RBTNode *l, RBTNode *r): key(value),color(c),parent(),left(l),right(r) {} }; template <class T> class RBTree { private: RBTNode<T> *mRoot; // 根结点 public: RBTree(); ~RBTree(); // 前序遍历"红黑树" void preOrder(); // 中序遍历"红黑树" void inOrder(); // 后序遍历"红黑树" void postOrder(); // (递归实现)查找"红黑树"中键值为key的节点 RBTNode<T>* search(T key); // (非递归实现)查找"红黑树"中键值为key的节点 RBTNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。 T minimum(); // 查找最大结点:返回最大结点的键值。 T maximum(); // 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。 RBTNode<T>* successor(RBTNode<T> *x); // 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。 RBTNode<T>* predecessor(RBTNode<T> *x); // 将结点(key为节点键值)插入到红黑树中 void insert(T key); // 删除结点(key为节点键值) void remove(T key); // 销毁红黑树 void destroy(); // 打印红黑树 void print(); private: // 前序遍历"红黑树" void preOrder(RBTNode<T>* tree) const; // 中序遍历"红黑树" void inOrder(RBTNode<T>* tree) const; // 后序遍历"红黑树" void postOrder(RBTNode<T>* tree) const; // (递归实现)查找"红黑树x"中键值为key的节点 RBTNode<T>* search(RBTNode<T>* x, T key) const; // (非递归实现)查找"红黑树x"中键值为key的节点 RBTNode<T>* iterativeSearch(RBTNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的红黑树的最小结点。 RBTNode<T>* minimum(RBTNode<T>* tree); // 查找最大结点:返回tree为根结点的红黑树的最大结点。 RBTNode<T>* maximum(RBTNode<T>* tree); // 左旋 void leftRotate(RBTNode<T>* &root, RBTNode<T>* x); // 右旋 void rightRotate(RBTNode<T>* &root, RBTNode<T>* y); // 插入函数 void insert(RBTNode<T>* &root, RBTNode<T>* node); // 插入修正函数 void insertFixUp(RBTNode<T>* &root, RBTNode<T>* node); // 删除函数 void remove(RBTNode<T>* &root, RBTNode<T> *node); // 删除修正函数 void removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent); // 销毁红黑树 void destroy(RBTNode<T>* &tree); // 打印红黑树 void print(RBTNode<T>* tree, T key, int direction); #define rb_parent(r) ((r)->parent) #define rb_color(r) ((r)->color) #define rb_is_red(r) ((r)->color==RED) #define rb_is_black(r) ((r)->color==BLACK) #define rb_set_black(r) do { (r)->color = BLACK; } while (0) #define rb_set_red(r) do { (r)->color = RED; } while (0) #define rb_set_parent(r,p) do { (r)->parent = (p); } while (0) #define rb_set_color(r,c) do { (r)->color = (c); } while (0) };
RBTNode是红黑树的节点类,而RBTree对应是红黑树的操作实现类。在RBTree中包含了根节点mRoot和红黑树的相关API。
注意:(01) 在实现红黑树API的过程中,我重载了许多函数。重载的原因,一是因为有的API是内部接口,有的是外部接口;二是为了让结构更加清晰。
(02) 由于C++的实现是在上一篇介绍的"C语言"实现基础上移植而来,在该代码中,保留了一些C语言的特性;例如(宏定义)。
2. 左旋
对x进行左旋,意味着"将x变成一个左节点"。
左旋的实现代码(C++语言)
/* * 对红黑树的节点(x)进行左旋转 * * 左旋示意图(对节点x进行左旋): * px px * / / * x y * / \ --(左旋)--> / \ # * lx y x ry * / \ / \ * ly ry lx ly * * */ template <class T> void RBTree<T>::leftRotate(RBTNode<T>* &root, RBTNode<T>* x) { // 设置x的右孩子为y RBTNode<T> *y = x->right; // 将 “y的左孩子” 设为 “x的右孩子”; // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲” x->right = y->left; if (y->left != NULL) y->left->parent = x; // 将 “x的父亲” 设为 “y的父亲” y->parent = x->parent; if (x->parent == NULL) { root = y; // 如果 “x的父亲” 是空节点,则将y设为根节点 } else { if (x->parent->left == x) x->parent->left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” else x->parent->right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” } // 将 “x” 设为 “y的左孩子” y->left = x; // 将 “x的父节点” 设为 “y” x->parent = y; }
3. 右旋
对y进行左旋,意味着"将y变成一个右节点"。
右旋的实现代码(C++语言)
/* * 对红黑树的节点(y)进行右旋转 * * 右旋示意图(对节点y进行左旋): * py py * / / * y x * / \ --(右旋)--> / \ # * x ry lx y * / \ / \ # * lx rx rx ry * */ template <class T> void RBTree<T>::rightRotate(RBTNode<T>* &root, RBTNode<T>* y) { // 设置x是当前节点的左孩子。 RBTNode<T> *x = y->left; // 将 “x的右孩子” 设为 “y的左孩子”; // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲” y->left = x->right; if (x->right != NULL) x->right->parent = y; // 将 “y的父亲” 设为 “x的父亲” x->parent = y->parent; if (y->parent == NULL) { root = x; // 如果 “y的父亲” 是空节点,则将x设为根节点 } else { if (y == y->parent->right) y->parent->right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子” else y->parent->left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子” } // 将 “y” 设为 “x的右孩子” x->right = y; // 将 “y的父节点” 设为 “x” y->parent = x; }
4. 添加
将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过"旋转和重新着色"等一系列操作来修正该树,使之重新成为一颗红黑树。详细描述如下:
第一步: 将红黑树当作一颗二叉查找树,将节点插入。
红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。
好吧?那接下来,我们就来想方设法的旋转以及重新着色,使这颗树重新成为红黑树!
第二步:将插入的节点着色为"红色"。
为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。o(∩∩)o...哈哈
第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
对于"特性(4)",是有可能违背的!
那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。
添加操作的实现代码(C++语言)
/* * 将结点插入到红黑树中 * * 参数说明: * root 红黑树的根结点 * node 插入的结点 // 对应《算法导论》中的node */ template <class T> void RBTree<T>::insert(RBTNode<T>* &root, RBTNode<T>* node) { RBTNode<T> *y = NULL; RBTNode<T> *x = root; // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。 while (x != NULL) { y = x; if (node->key < x->key) x = x->left; else x = x->right; } node->parent = y; if (y!=NULL) { if (node->key < y->key) y->left = node; else y->right = node; } else root = node; // 2. 设置节点的颜色为红色 node->color = RED; // 3. 将它重新修正为一颗二叉查找树 insertFixUp(root, node); } /* * 将结点(key为节点键值)插入到红黑树中 * * 参数说明: * tree 红黑树的根结点 * key 插入结点的键值 */ template <class T> void RBTree<T>::insert(T key) { RBTNode<T> *z=NULL; // 如果新建结点失败,则返回。 if ((z=new RBTNode<T>(key,BLACK,NULL,NULL,NULL)) == NULL) return ; insert(mRoot, z); }
内部接口 -- insert(root, node)的作用是将"node"节点插入到红黑树中。其中,root是根,node是被插入节点。
外部接口 -- insert(key)的作用是将"key"添加到红黑树中。
添加修正操作的实现代码(C++语言)
/* * 红黑树插入修正函数 * * 在向红黑树中插入节点之后(失去平衡),再调用该函数; * 目的是将它重新塑造成一颗红黑树。 * * 参数说明: * root 红黑树的根 * node 插入的结点 // 对应《算法导论》中的z */ template <class T> void RBTree<T>::insertFixUp(RBTNode<T>* &root, RBTNode<T>* node) { RBTNode<T> *parent, *gparent; // 若“父节点存在,并且父节点的颜色是红色” while ((parent = rb_parent(node)) && rb_is_red(parent)) { gparent = rb_parent(parent); //若“父节点”是“祖父节点的左孩子” if (parent == gparent->left) { // Case 1条件:叔叔节点是红色 { RBTNode<T> *uncle = gparent->right; if (uncle && rb_is_red(uncle)) { rb_set_black(uncle); rb_set_black(parent); rb_set_red(gparent); node = gparent; continue; } } // Case 2条件:叔叔是黑色,且当前节点是右孩子 if (parent->right == node) { RBTNode<T> *tmp; leftRotate(root, parent); tmp = parent; parent = node; node = tmp; } // Case 3条件:叔叔是黑色,且当前节点是左孩子。 rb_set_black(parent); rb_set_red(gparent); rightRotate(root, gparent); } else//若“z的父节点”是“z的祖父节点的右孩子” { // Case 1条件:叔叔节点是红色 { RBTNode<T> *uncle = gparent->left; if (uncle && rb_is_red(uncle)) { rb_set_black(uncle); rb_set_black(parent); rb_set_red(gparent); node = gparent; continue; } } // Case 2条件:叔叔是黑色,且当前节点是左孩子 if (parent->left == node) { RBTNode<T> *tmp; rightRotate(root, parent); tmp = parent; parent = node; node = tmp; } // Case 3条件:叔叔是黑色,且当前节点是右孩子。 rb_set_black(parent); rb_set_red(gparent); leftRotate(root, gparent); } } // 将根节点设为黑色 rb_set_black(root); }
insertFixUp(root, node)的作用是对应"上面所讲的第三步"。它是一个内部接口。
5. 删除操作
将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。详细描述如下:
第一步:将红黑树当作一颗二叉查找树,将节点删除。
这和"删除常规二叉查找树中删除节点的方法是一样的"。分3种情况:
① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给"被删除节点"之后,再将后继节点删除。这样就巧妙的将问题转换为"删除后继节点"的情况了,下面就考虑后继节点。 在"被删除节点"有两个非空子节点的情况下,它的后继节点不可能是双子非空。既然"的后继节点"不可能双子都非空,就意味着"该节点的后继节点"要么没有儿子,要么只有一个儿子。若没有儿子,则按"情况① "进行处理;若只有一个儿子,则按"情况② "进行处理。
第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。
因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正该树,使之重新成为一棵红黑树。
删除操作的实现代码(C++语言)
/* * 删除结点(node),并返回被删除的结点 * * 参数说明: * root 红黑树的根结点 * node 删除的结点 */ template <class T> void RBTree<T>::remove(RBTNode<T>* &root, RBTNode<T> *node) { RBTNode<T> *child, *parent; RBTColor color; // 被删除节点的"左右孩子都不为空"的情况。 if ( (node->left!=NULL) && (node->right!=NULL) ) { // 被删节点的后继节点。(称为"取代节点") // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。 RBTNode<T> *replace = node; // 获取后继节点 replace = replace->right; while (replace->left != NULL) replace = replace->left; // "node节点"不是根节点(只有根节点不存在父节点) if (rb_parent(node)) { if (rb_parent(node)->left == node) rb_parent(node)->left = replace; else rb_parent(node)->right = replace; } else // "node节点"是根节点,更新根节点。 root = replace; // child是"取代节点"的右孩子,也是需要"调整的节点"。 // "取代节点"肯定不存在左孩子!因为它是一个后继节点。 child = replace->right; parent = rb_parent(replace); // 保存"取代节点"的颜色 color = rb_color(replace); // "被删除节点"是"它的后继节点的父节点" if (parent == node) { parent = replace; } else { // child不为空 if (child) rb_set_parent(child, parent); parent->left = child; replace->right = node->right; rb_set_parent(node->right, replace); } replace->parent = node->parent; replace->color = node->color; replace->left = node->left; node->left->parent = replace; if (color == BLACK) removeFixUp(root, child, parent); delete node; return ; } if (node->left !=NULL) child = node->left; else child = node->right; parent = node->parent; // 保存"取代节点"的颜色 color = node->color; if (child) child->parent = parent; // "node节点"不是根节点 if (parent) { if (parent->left == node) parent->left = child; else parent->right = child; } else root = child; if (color == BLACK) removeFixUp(root, child, parent); delete node; } /* * 删除红黑树中键值为key的节点 * * 参数说明: * tree 红黑树的根结点 */ template <class T> void RBTree<T>::remove(T key) { RBTNode<T> *node; // 查找key对应的节点(node),找到的话就删除该节点 if ((node = search(mRoot, key)) != NULL) remove(mRoot, node); }
内部接口 -- remove(root, node)的作用是将"node"节点插入到红黑树中。其中,root是根,node是被插入节点。
外部接口 -- remove(key)删除红黑树中键值为key的节点。
删除修正操作的实现代码(C++语言)
/* * 红黑树删除修正函数 * * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数; * 目的是将它重新塑造成一颗红黑树。 * * 参数说明: * root 红黑树的根 * node 待修正的节点 */ template <class T> void RBTree<T>::removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent) { RBTNode<T> *other; while ((!node || rb_is_black(node)) && node != root) { if (parent->left == node) { other = parent->right; if (rb_is_red(other)) { // Case 1: x的兄弟w是红色的 rb_set_black(other); rb_set_red(parent); leftRotate(root, parent); other = parent->right; } if ((!other->left || rb_is_black(other->left)) && (!other->right || rb_is_black(other->right))) { // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 rb_set_red(other); node = parent; parent = rb_parent(node); } else { if (!other->right || rb_is_black(other->right)) { // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 rb_set_black(other->left); rb_set_red(other); rightRotate(root, other); other = parent->right; } // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 rb_set_color(other, rb_color(parent)); rb_set_black(parent); rb_set_black(other->right); leftRotate(root, parent); node = root; break; } } else { other = parent->left; if (rb_is_red(other)) { // Case 1: x的兄弟w是红色的 rb_set_black(other); rb_set_red(parent); rightRotate(root, parent); other = parent->left; } if ((!other->left || rb_is_black(other->left)) && (!other->right || rb_is_black(other->right))) { // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 rb_set_red(other); node = parent; parent = rb_parent(node); } else { if (!other->left || rb_is_black(other->left)) { // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 rb_set_black(other->right); rb_set_red(other); leftRotate(root, other); other = parent->left; } // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 rb_set_color(other, rb_color(parent)); rb_set_black(parent); rb_set_black(other->left); rightRotate(root, parent); node = root; break; } } } if (node) rb_set_black(node); }
removeFixup(root, node, parent)是对应"上面所讲的第三步"。它是一个内部接口。
红黑树的C++实现(完整源码)
下面是红黑树实现的完整代码和相应的测试程序。
(1) 除了上面所说的"左旋"、"右旋"、"添加"、"删除"等基本操作之后,还实现了"遍历"、"查找"、"打印"、"最小值"、"最大值"、"创建"、"销毁"等接口。
(2) 函数接口大多分为内部接口和外部接口。内部接口是private函数,外部接口则是public函数。
(3) 测试代码中提供了"插入"和"删除"动作的检测开关。默认是关闭的,打开方法可以参考"代码中的说明"。建议在打开开关后,在草稿上自己动手绘制一下红黑树。
红黑树的实现文件(RBTree.h)
1 /** 2 * C++ 语言: 红黑树 3 * 4 * @author skywang 5 * @date 2013/11/07 6 */ 7 8 #ifndef _RED_BLACK_TREE_HPP_ 9 #define _RED_BLACK_TREE_HPP_ 10 11 #include <iomanip> 12 #include <iostream> 13 using namespace std; 14 15 enum RBTColor{RED, BLACK}; 16 17 template <class T> 18 class RBTNode{ 19 public: 20 RBTColor color; // 颜色 21 T key; // 关键字(键值) 22 RBTNode *left; // 左孩子 23 RBTNode *right; // 右孩子 24 RBTNode *parent; // 父结点 25 26 RBTNode(T value, RBTColor c, RBTNode *p, RBTNode *l, RBTNode *r): 27 key(value),color(c),parent(),left(l),right(r) {} 28 }; 29 30 template <class T> 31 class RBTree { 32 private: 33 RBTNode<T> *mRoot; // 根结点 34 35 public: 36 RBTree(); 37 ~RBTree(); 38 39 // 前序遍历"红黑树" 40 void preOrder(); 41 // 中序遍历"红黑树" 42 void inOrder(); 43 // 后序遍历"红黑树" 44 void postOrder(); 45 46 // (递归实现)查找"红黑树"中键值为key的节点 47 RBTNode<T>* search(T key); 48 // (非递归实现)查找"红黑树"中键值为key的节点 49 RBTNode<T>* iterativeSearch(T key); 50 51 // 查找最小结点:返回最小结点的键值。 52 T minimum(); 53 // 查找最大结点:返回最大结点的键值。 54 T maximum(); 55 56 // 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。 57 RBTNode<T>* successor(RBTNode<T> *x); 58 // 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。 59 RBTNode<T>* predecessor(RBTNode<T> *x); 60 61 // 将结点(key为节点键值)插入到红黑树中 62 void insert(T key); 63 64 // 删除结点(key为节点键值) 65 void remove(T key); 66 67 // 销毁红黑树 68 void destroy(); 69 70 // 打印红黑树 71 void print(); 72 private: 73 // 前序遍历"红黑树" 74 void preOrder(RBTNode<T>* tree) const; 75 // 中序遍历"红黑树" 76 void inOrder(RBTNode<T>* tree) const; 77 // 后序遍历"红黑树" 78 void postOrder(RBTNode<T>* tree) const; 79 80 // (递归实现)查找"红黑树x"中键值为key的节点 81 RBTNode<T>* search(RBTNode<T>* x, T key) const; 82 // (非递归实现)查找"红黑树x"中键值为key的节点 83 RBTNode<T>* iterativeSearch(RBTNode<T>* x, T key) const; 84 85 // 查找最小结点:返回tree为根结点的红黑树的最小结点。 86 RBTNode<T>* minimum(RBTNode<T>* tree); 87 // 查找最大结点:返回tree为根结点的红黑树的最大结点。 88 RBTNode<T>* maximum(RBTNode<T>* tree); 89 90 // 左旋 91 void leftRotate(RBTNode<T>* &root, RBTNode<T>* x); 92 // 右旋 93 void rightRotate(RBTNode<T>* &root, RBTNode<T>* y); 94 // 插入函数 95 void insert(RBTNode<T>* &root, RBTNode<T>* node); 96 // 插入修正函数 97 void insertFixUp(RBTNode<T>* &root, RBTNode<T>* node); 98 // 删除函数 99 void remove(RBTNode<T>* &root, RBTNode<T> *node); 100 // 删除修正函数 101 void removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent); 102 103 // 销毁红黑树 104 void destroy(RBTNode<T>* &tree); 105 106 // 打印红黑树 107 void print(RBTNode<T>* tree, T key, int direction); 108 109 #define rb_parent(r) ((r)->parent) 110 #define rb_color(r) ((r)->color) 111 #define rb_is_red(r) ((r)->color==RED) 112 #define rb_is_black(r) ((r)->color==BLACK) 113 #define rb_set_black(r) do { (r)->color = BLACK; } while (0) 114 #define rb_set_red(r) do { (r)->color = RED; } while (0) 115 #define rb_set_parent(r,p) do { (r)->parent = (p); } while (0) 116 #define rb_set_color(r,c) do { (r)->color = (c); } while (0) 117 }; 118 119 /* 120 * 构造函数 121 */ 122 template <class T> 123 RBTree<T>::RBTree():mRoot(NULL) 124 { 125 mRoot = NULL; 126 } 127 128 /* 129 * 析构函数 130 */ 131 template <class T> 132 RBTree<T>::~RBTree() 133 { 134 destroy(); 135 } 136 137 /* 138 * 前序遍历"红黑树" 139 */ 140 template <class T> 141 void RBTree<T>::preOrder(RBTNode<T>* tree) const 142 { 143 if(tree != NULL) 144 { 145 cout<< tree->key << " " ; 146 preOrder(tree->left); 147 preOrder(tree->right); 148 } 149 } 150 151 template <class T> 152 void RBTree<T>::preOrder() 153 { 154 preOrder(mRoot); 155 } 156 157 /* 158 * 中序遍历"红黑树" 159 */ 160 template <class T> 161 void RBTree<T>::inOrder(RBTNode<T>* tree) const 162 { 163 if(tree != NULL) 164 { 165 inOrder(tree->left); 166 cout<< tree->key << " " ; 167 inOrder(tree->right); 168 } 169 } 170 171 template <class T> 172 void RBTree<T>::inOrder() 173 { 174 inOrder(mRoot); 175 } 176 177 /* 178 * 后序遍历"红黑树" 179 */ 180 template <class T> 181 void RBTree<T>::postOrder(RBTNode<T>* tree) const 182 { 183 if(tree != NULL) 184 { 185 postOrder(tree->left); 186 postOrder(tree->right); 187 cout<< tree->key << " " ; 188 } 189 } 190 191 template <class T> 192 void RBTree<T>::postOrder() 193 { 194 postOrder(mRoot); 195 } 196 197 /* 198 * (递归实现)查找"红黑树x"中键值为key的节点 199 */ 200 template <class T> 201 RBTNode<T>* RBTree<T>::search(RBTNode<T>* x, T key) const 202 { 203 if (x==NULL || x->key==key) 204 return x; 205 206 if (key < x->key) 207 return search(x->left, key); 208 else 209 return search(x->right, key); 210 } 211 212 template <class T> 213 RBTNode<T>* RBTree<T>::search(T key) 214 { 215 search(mRoot, key); 216 } 217 218 /* 219 * (非递归实现)查找"红黑树x"中键值为key的节点 220 */ 221 template <class T> 222 RBTNode<T>* RBTree<T>::iterativeSearch(RBTNode<T>* x, T key) const 223 { 224 while ((x!=NULL) && (x->key!=key)) 225 { 226 if (key < x->key) 227 x = x->left; 228 else 229 x = x->right; 230 } 231 232 return x; 233 } 234 235 template <class T> 236 RBTNode<T>* RBTree<T>::iterativeSearch(T key) 237 { 238 iterativeSearch(mRoot, key); 239 } 240 241 /* 242 * 查找最小结点:返回tree为根结点的红黑树的最小结点。 243 */ 244 template <class T> 245 RBTNode<T>* RBTree<T>::minimum(RBTNode<T>* tree) 246 { 247 if (tree == NULL) 248 return NULL; 249 250 while(tree->left != NULL) 251 tree = tree->left; 252 return tree; 253 } 254 255 template <class T> 256 T RBTree<T>::minimum() 257 { 258 RBTNode<T> *p = minimum(mRoot); 259 if (p != NULL) 260 return p->key; 261 262 return (T)NULL; 263 } 264 265 /* 266 * 查找最大结点:返回tree为根结点的红黑树的最大结点。 267 */ 268 template <class T> 269 RBTNode<T>* RBTree<T>::maximum(RBTNode<T>* tree) 270 { 271 if (tree == NULL) 272 return NULL; 273 274 while(tree->right != NULL) 275 tree = tree->right; 276 return tree; 277 } 278 279 template <class T> 280 T RBTree<T>::maximum() 281 { 282 RBTNode<T> *p = maximum(mRoot); 283 if (p != NULL) 284 return p->key; 285 286 return (T)NULL; 287 } 288 289 /* 290 * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。 291 */ 292 template <class T> 293 RBTNode<T>* RBTree<T>::successor(RBTNode<T> *x) 294 { 295 // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。 296 if (x->right != NULL) 297 return minimum(x->right); 298 299 // 如果x没有右孩子。则x有以下两种可能: 300 // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。 301 // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。 302 RBTNode<T>* y = x->parent; 303 while ((y!=NULL) && (x==y->right)) 304 { 305 x = y; 306 y = y->parent; 307 } 308 309 return y; 310 } 311 312 /* 313 * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。 314 */ 315 template <class T> 316 RBTNode<T>* RBTree<T>::predecessor(RBTNode<T> *x) 317 { 318 // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。 319 if (x->left != NULL) 320 return maximum(x->left); 321 322 // 如果x没有左孩子。则x有以下两种可能: 323 // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。 324 // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。 325 RBTNode<T>* y = x->parent; 326 while ((y!=NULL) && (x==y->left)) 327 { 328 x = y; 329 y = y->parent; 330 } 331 332 return y; 333 } 334 335 /* 336 * 对红黑树的节点(x)进行左旋转 337 * 338 * 左旋示意图(对节点x进行左旋): 339 * px px 340 * / / 341 * x y 342 * / \ --(左旋)--> / \ # 343 * lx y x ry 344 * / \ / \ 345 * ly ry lx ly 346 * 347 * 348 */ 349 template <class T> 350 void RBTree<T>::leftRotate(RBTNode<T>* &root, RBTNode<T>* x) 351 { 352 // 设置x的右孩子为y 353 RBTNode<T> *y = x->right; 354 355 // 将 “y的左孩子” 设为 “x的右孩子”; 356 // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲” 357 x->right = y->left; 358 if (y->left != NULL) 359 y->left->parent = x; 360 361 // 将 “x的父亲” 设为 “y的父亲” 362 y->parent = x->parent; 363 364 if (x->parent == NULL) 365 { 366 root = y; // 如果 “x的父亲” 是空节点,则将y设为根节点 367 } 368 else 369 { 370 if (x->parent->left == x) 371 x->parent->left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” 372 else 373 x->parent->right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” 374 } 375 376 // 将 “x” 设为 “y的左孩子” 377 y->left = x; 378 // 将 “x的父节点” 设为 “y” 379 x->parent = y; 380 } 381 382 /* 383 * 对红黑树的节点(y)进行右旋转 384 * 385 * 右旋示意图(对节点y进行左旋): 386 * py py 387 * / / 388 * y x 389 * / \ --(右旋)--> / \ # 390 * x ry lx y 391 * / \ / \ # 392 * lx rx rx ry 393 * 394 */ 395 template <class T> 396 void RBTree<T>::rightRotate(RBTNode<T>* &root, RBTNode<T>* y) 397 { 398 // 设置x是当前节点的左孩子。 399 RBTNode<T> *x = y->left; 400 401 // 将 “x的右孩子” 设为 “y的左孩子”; 402 // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲” 403 y->left = x->right; 404 if (x->right != NULL) 405 x->right->parent = y; 406 407 // 将 “y的父亲” 设为 “x的父亲” 408 x->parent = y->parent; 409 410 if (y->parent == NULL) 411 { 412 root = x; // 如果 “y的父亲” 是空节点,则将x设为根节点 413 } 414 else 415 { 416 if (y == y->parent->right) 417 y->parent->right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子” 418 else 419 y->parent->left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子” 420 } 421 422 // 将 “y” 设为 “x的右孩子” 423 x->right = y; 424 425 // 将 “y的父节点” 设为 “x” 426 y->parent = x; 427 } 428 429 /* 430 * 红黑树插入修正函数 431 * 432 * 在向红黑树中插入节点之后(失去平衡),再调用该函数; 433 * 目的是将它重新塑造成一颗红黑树。 434 * 435 * 参数说明: 436 * root 红黑树的根 437 * node 插入的结点 // 对应《算法导论》中的z 438 */ 439 template <class T> 440 void RBTree<T>::insertFixUp(RBTNode<T>* &root, RBTNode<T>* node) 441 { 442 RBTNode<T> *parent, *gparent; 443 444 // 若“父节点存在,并且父节点的颜色是红色” 445 while ((parent = rb_parent(node)) && rb_is_red(parent)) 446 { 447 gparent = rb_parent(parent); 448 449 //若“父节点”是“祖父节点的左孩子” 450 if (parent == gparent->left) 451 { 452 // Case 1条件:叔叔节点是红色 453 { 454 RBTNode<T> *uncle = gparent->right; 455 if (uncle && rb_is_red(uncle)) 456 { 457 rb_set_black(uncle); 458 rb_set_black(parent); 459 rb_set_red(gparent); 460 node = gparent; 461 continue; 462 } 463 } 464 465 // Case 2条件:叔叔是黑色,且当前节点是右孩子 466 if (parent->right == node) 467 { 468 RBTNode<T> *tmp; 469 leftRotate(root, parent); 470 tmp = parent; 471 parent = node; 472 node = tmp; 473 } 474 475 // Case 3条件:叔叔是黑色,且当前节点是左孩子。 476 rb_set_black(parent); 477 rb_set_red(gparent); 478 rightRotate(root, gparent); 479 } 480 else//若“z的父节点”是“z的祖父节点的右孩子” 481 { 482 // Case 1条件:叔叔节点是红色 483 { 484 RBTNode<T> *uncle = gparent->left; 485 if (uncle && rb_is_red(uncle)) 486 { 487 rb_set_black(uncle); 488 rb_set_black(parent); 489 rb_set_red(gparent); 490 node = gparent; 491 continue; 492 } 493 } 494 495 // Case 2条件:叔叔是黑色,且当前节点是左孩子 496 if (parent->left == node) 497 { 498 RBTNode<T> *tmp; 499 rightRotate(root, parent); 500 tmp = parent; 501 parent = node; 502 node = tmp; 503 } 504 505 // Case 3条件:叔叔是黑色,且当前节点是右孩子。 506 rb_set_black(parent); 507 rb_set_red(gparent); 508 leftRotate(root, gparent); 509 } 510 } 511 512 // 将根节点设为黑色 513 rb_set_black(root); 514 } 515 516 /* 517 * 将结点插入到红黑树中 518 * 519 * 参数说明: 520 * root 红黑树的根结点 521 * node 插入的结点 // 对应《算法导论》中的node 522 */ 523 template <class T> 524 void RBTree<T>::insert(RBTNode<T>* &root, RBTNode<T>* node) 525 { 526 RBTNode<T> *y = NULL; 527 RBTNode<T> *x = root; 528 529 // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。 530 while (x != NULL) 531 { 532 y = x; 533 if (node->key < x->key) 534 x = x->left; 535 else 536 x = x->right; 537 } 538 539 node->parent = y; 540 if (y!=NULL) 541 { 542 if (node->key < y->key) 543 y->left = node; 544 else 545 y->right = node; 546 } 547 else 548 root = node; 549 550 // 2. 设置节点的颜色为红色 551 node->color = RED; 552 553 // 3. 将它重新修正为一颗二叉查找树 554 insertFixUp(root, node); 555 } 556 557 /* 558 * 将结点(key为节点键值)插入到红黑树中 559 * 560 * 参数说明: 561 * tree 红黑树的根结点 562 * key 插入结点的键值 563 */ 564 template <class T> 565 void RBTree<T>::insert(T key) 566 { 567 RBTNode<T> *z=NULL; 568 569 // 如果新建结点失败,则返回。 570 if ((z=new RBTNode<T>(key,BLACK,NULL,NULL,NULL)) == NULL) 571 return ; 572 573 insert(mRoot, z); 574 } 575 576 /* 577 * 红黑树删除修正函数 578 * 579 * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数; 580 * 目的是将它重新塑造成一颗红黑树。 581 * 582 * 参数说明: 583 * root 红黑树的根 584 * node 待修正的节点 585 */ 586 template <class T> 587 void RBTree<T>::removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent) 588 { 589 RBTNode<T> *other; 590 591 while ((!node || rb_is_black(node)) && node != root) 592 { 593 if (parent->left == node) 594 { 595 other = parent->right; 596 if (rb_is_red(other)) 597 { 598 // Case 1: x的兄弟w是红色的 599 rb_set_black(other); 600 rb_set_red(parent); 601 leftRotate(root, parent); 602 other = parent->right; 603 } 604 if ((!other->left || rb_is_black(other->left)) && 605 (!other->right || rb_is_black(other->right))) 606 { 607 // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 608 rb_set_red(other); 609 node = parent; 610 parent = rb_parent(node); 611 } 612 else 613 { 614 if (!other->right || rb_is_black(other->right)) 615 { 616 // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 617 rb_set_black(other->left); 618 rb_set_red(other); 619 rightRotate(root, other); 620 other = parent->right; 621 } 622 // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 623 rb_set_color(other, rb_color(parent)); 624 rb_set_black(parent); 625 rb_set_black(other->right); 626 leftRotate(root, parent); 627 node = root; 628 break; 629 } 630 } 631 else 632 { 633 other = parent->left; 634 if (rb_is_red(other)) 635 { 636 // Case 1: x的兄弟w是红色的 637 rb_set_black(other); 638 rb_set_red(parent); 639 rightRotate(root, parent); 640 other = parent->left; 641 } 642 if ((!other->left || rb_is_black(other->left)) && 643 (!other->right || rb_is_black(other->right))) 644 { 645 // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 646 rb_set_red(other); 647 node = parent; 648 parent = rb_parent(node); 649 } 650 else 651 { 652 if (!other->left || rb_is_black(other->left)) 653 { 654 // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 655 rb_set_black(other->right); 656 rb_set_red(other); 657 leftRotate(root, other); 658 other = parent->left; 659 } 660 // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 661 rb_set_color(other, rb_color(parent)); 662 rb_set_black(parent); 663 rb_set_black(other->left); 664 rightRotate(root, parent); 665 node = root; 666 break; 667 } 668 } 669 } 670 if (node) 671 rb_set_black(node); 672 } 673 674 /* 675 * 删除结点(node),并返回被删除的结点 676 * 677 * 参数说明: 678 * root 红黑树的根结点 679 * node 删除的结点 680 */ 681 template <class T> 682 void RBTree<T>::remove(RBTNode<T>* &root, RBTNode<T> *node) 683 { 684 RBTNode<T> *child, *parent; 685 RBTColor color; 686 687 // 被删除节点的"左右孩子都不为空"的情况。 688 if ( (node->left!=NULL) && (node->right!=NULL) ) 689 { 690 // 被删节点的后继节点。(称为"取代节点") 691 // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。 692 RBTNode<T> *replace = node; 693 694 // 获取后继节点 695 replace = replace->right; 696 while (replace->left != NULL) 697 replace = replace->left; 698 699 // "node节点"不是根节点(只有根节点不存在父节点) 700 if (rb_parent(node)) 701 { 702 if (rb_parent(node)->left == node) 703 rb_parent(node)->left = replace; 704 else 705 rb_parent(node)->right = replace; 706 } 707 else 708 // "node节点"是根节点,更新根节点。 709 root = replace; 710 711 // child是"取代节点"的右孩子,也是需要"调整的节点"。 712 // "取代节点"肯定不存在左孩子!因为它是一个后继节点。 713 child = replace->right; 714 parent = rb_parent(replace); 715 // 保存"取代节点"的颜色 716 color = rb_color(replace); 717 718 // "被删除节点"是"它的后继节点的父节点" 719 if (parent == node) 720 { 721 parent = replace; 722 } 723 else 724 { 725 // child不为空 726 if (child) 727 rb_set_parent(child, parent); 728 parent->left = child; 729 730 replace->right = node->right; 731 rb_set_parent(node->right, replace); 732 } 733 734 replace->parent = node->parent; 735 replace->color = node->color; 736 replace->left = node->left; 737 node->left->parent = replace; 738 739 if (color == BLACK) 740 removeFixUp(root, child, parent); 741 742 delete node; 743 return ; 744 } 745 746 if (node->left !=NULL) 747 child = node->left; 748 else 749 child = node->right; 750 751 parent = node->parent; 752 // 保存"取代节点"的颜色 753 color = node->color; 754 755 if (child) 756 child->parent = parent; 757 758 // "node节点"不是根节点 759 if (parent) 760 { 761 if (parent->left == node) 762 parent->left = child; 763 else 764 parent->right = child; 765 } 766 else 767 root = child; 768 769 if (color == BLACK) 770 removeFixUp(root, child, parent); 771 delete node; 772 } 773 774 /* 775 * 删除红黑树中键值为key的节点 776 * 777 * 参数说明: 778 * tree 红黑树的根结点 779 */ 780 template <class T> 781 void RBTree<T>::remove(T key) 782 { 783 RBTNode<T> *node; 784 785 // 查找key对应的节点(node),找到的话就删除该节点 786 if ((node = search(mRoot, key)) != NULL) 787 remove(mRoot, node); 788 } 789 790 /* 791 * 销毁红黑树 792 */ 793 template <class T> 794 void RBTree<T>::destroy(RBTNode<T>* &tree) 795 { 796 if (tree==NULL) 797 return ; 798 799 if (tree->left != NULL) 800 return destroy(tree->left); 801 if (tree->right != NULL) 802 return destroy(tree->right); 803 804 delete tree; 805 tree=NULL; 806 } 807 808 template <class T> 809 void RBTree<T>::destroy() 810 { 811 destroy(mRoot); 812 } 813 814 /* 815 * 打印"二叉查找树" 816 * 817 * key -- 节点的键值 818 * direction -- 0,表示该节点是根节点; 819 * -1,表示该节点是它的父结点的左孩子; 820 * 1,表示该节点是它的父结点的右孩子。 821 */ 822 template <class T> 823 void RBTree<T>::print(RBTNode<T>* tree, T key, int direction) 824 { 825 if(tree != NULL) 826 { 827 if(direction==0) // tree是根节点 828 cout << setw(2) << tree->key << "(B) is root" << endl; 829 else // tree是分支节点 830 cout << setw(2) << tree->key << (rb_is_red(tree)?"(R)":"(B)") << " is " << setw(2) << key << "'s " << setw(12) << (direction==1?"right child" : "left child") << endl; 831 832 print(tree->left, tree->key, -1); 833 print(tree->right,tree->key, 1); 834 } 835 } 836 837 template <class T> 838 void RBTree<T>::print() 839 { 840 if (mRoot != NULL) 841 print(mRoot, mRoot->key, 0); 842 } 843 844 #endif
红黑树的测试文件(RBTreeTest.cpp)
1 /** 2 * C++ 语言: 二叉查找树 3 * 4 * @author skywang 5 * @date 2013/11/07 6 */ 7 8 #include <iostream> 9 #include "RBTree.h" 10 using namespace std; 11 12 int main() 13 { 14 int a[]= {10, 40, 30, 60, 90, 70, 20, 50, 80}; 15 int check_insert=0; // "插入"动作的检测开关(0,关闭;1,打开) 16 int check_remove=0; // "删除"动作的检测开关(0,关闭;1,打开) 17 int i; 18 int ilen = (sizeof(a)) / (sizeof(a[0])) ; 19 RBTree<int>* tree=new RBTree<int>(); 20 21 cout << "== 原始数据: "; 22 for(i=0; i<ilen; i++) 23 cout << a[i] <<" "; 24 cout << endl; 25 26 for(i=0; i<ilen; i++) 27 { 28 tree->insert(a[i]); 29 // 设置check_insert=1,测试"添加函数" 30 if(check_insert) 31 { 32 cout << "== 添加节点: " << a[i] << endl; 33 cout << "== 树的详细信息: " << endl; 34 tree->print(); 35 cout << endl; 36 } 37 38 } 39 40 cout << "== 前序遍历: "; 41 tree->preOrder(); 42 43 cout << "\n== 中序遍历: "; 44 tree->inOrder(); 45 46 cout << "\n== 后序遍历: "; 47 tree->postOrder(); 48 cout << endl; 49 50 cout << "== 最小值: " << tree->minimum() << endl; 51 cout << "== 最大值: " << tree->maximum() << endl; 52 cout << "== 树的详细信息: " << endl; 53 tree->print(); 54 55 // 设置check_remove=1,测试"删除函数" 56 if(check_remove) 57 { 58 for(i=0; i<ilen; i++) 59 { 60 tree->remove(a[i]); 61 62 cout << "== 删除节点: " << a[i] << endl; 63 cout << "== 树的详细信息: " << endl; 64 tree->print(); 65 cout << endl; 66 } 67 } 68 69 // 销毁红黑树 70 tree->destroy(); 71 72 return 0; 73 }
红黑树的C++测试程序
测试程序已经包含在相应的实现文件(MaxHeap.cpp)中了,这里就不再重复说明。下面是测试程序的运行结果:
== 原始数据: 10 40 30 60 90 70 20 50 80 == 前序遍历: 30 10 20 60 40 50 80 70 90 == 中序遍历: 10 20 30 40 50 60 70 80 90 == 后序遍历: 20 10 50 40 70 90 80 60 30 == 最小值: 10 == 最大值: 90 == 树的详细信息: 30(B) is root 10(B) is 30's left child 20(R) is 10's right child 60(R) is 30's right child 40(B) is 60's left child 50(R) is 40's right child 80(B) is 60's right child 70(R) is 80's left child 90(R) is 80's right child