概要
前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树。本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证。若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章。
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3624202.html
更多内容:数据结构与算法系列 目录
(01) 红黑树(一)之 原理和算法详细介绍
(02) 红黑树(二)之 C语言的实现
(03) 红黑树(三)之 Linux内核中红黑树的经典实现
(04) 红黑树(四)之 C++的实现
(05) 红黑树(五)之 Java的实现
(06) 红黑树(六)之 参考资料
Linux内核中红黑树(完整源码)
红黑树的实现文件(rbtree.h)
1 /* 2 Red Black Trees 3 (C) 1999 Andrea Arcangeli <andrea@suse.de> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, write to the Free Software 17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 19 linux/include/linux/rbtree.h 20 21 To use rbtrees you'll have to implement your own insert and search cores. 22 This will avoid us to use callbacks and to drop drammatically performances. 23 I know it's not the cleaner way, but in C (not in C++) to get 24 performances and genericity... 25 26 Some example of insert and search follows here. The search is a plain 27 normal search over an ordered tree. The insert instead must be implemented 28 in two steps: First, the code must insert the element in order as a red leaf 29 in the tree, and then the support library function rb_insert_color() must 30 be called. Such function will do the not trivial work to rebalance the 31 rbtree, if necessary. 32 33 ----------------------------------------------------------------------- 34 static inline struct page * rb_search_page_cache(struct inode * inode, 35 unsigned long offset) 36 { 37 struct rb_node * n = inode->i_rb_page_cache.rb_node; 38 struct page * page; 39 40 while (n) 41 { 42 page = rb_entry(n, struct page, rb_page_cache); 43 44 if (offset < page->offset) 45 n = n->rb_left; 46 else if (offset > page->offset) 47 n = n->rb_right; 48 else 49 return page; 50 } 51 return NULL; 52 } 53 54 static inline struct page * __rb_insert_page_cache(struct inode * inode, 55 unsigned long offset, 56 struct rb_node * node) 57 { 58 struct rb_node ** p = &inode->i_rb_page_cache.rb_node; 59 struct rb_node * parent = NULL; 60 struct page * page; 61 62 while (*p) 63 { 64 parent = *p; 65 page = rb_entry(parent, struct page, rb_page_cache); 66 67 if (offset < page->offset) 68 p = &(*p)->rb_left; 69 else if (offset > page->offset) 70 p = &(*p)->rb_right; 71 else 72 return page; 73 } 74 75 rb_link_node(node, parent, p); 76 77 return NULL; 78 } 79 80 static inline struct page * rb_insert_page_cache(struct inode * inode, 81 unsigned long offset, 82 struct rb_node * node) 83 { 84 struct page * ret; 85 if ((ret = __rb_insert_page_cache(inode, offset, node))) 86 goto out; 87 rb_insert_color(node, &inode->i_rb_page_cache); 88 out: 89 return ret; 90 } 91 ----------------------------------------------------------------------- 92 */ 93 94 #ifndef _SLINUX_RBTREE_H 95 #define _SLINUX_RBTREE_H 96 97 #include <stdio.h> 98 //#include <linux/kernel.h> 99 //#include <linux/stddef.h> 100 101 struct rb_node 102 { 103 unsigned long rb_parent_color; 104 #define RB_RED 0 105 #define RB_BLACK 1 106 struct rb_node *rb_right; 107 struct rb_node *rb_left; 108 } /* __attribute__((aligned(sizeof(long))))*/; 109 /* The alignment might seem pointless, but allegedly CRIS needs it */ 110 111 struct rb_root 112 { 113 struct rb_node *rb_node; 114 }; 115 116 117 #define rb_parent(r) ((struct rb_node *)((r)->rb_parent_color & ~3)) 118 #define rb_color(r) ((r)->rb_parent_color & 1) 119 #define rb_is_red(r) (!rb_color(r)) 120 #define rb_is_black(r) rb_color(r) 121 #define rb_set_red(r) do { (r)->rb_parent_color &= ~1; } while (0) 122 #define rb_set_black(r) do { (r)->rb_parent_color |= 1; } while (0) 123 124 static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) 125 { 126 rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p; 127 } 128 static inline void rb_set_color(struct rb_node *rb, int color) 129 { 130 rb->rb_parent_color = (rb->rb_parent_color & ~1) | color; 131 } 132 133 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) 134 135 #define container_of(ptr, type, member) ({ \ 136 const typeof( ((type *)0)->member ) *__mptr = (ptr); \ 137 (type *)( (char *)__mptr - offsetof(type,member) );}) 138 139 #define RB_ROOT (struct rb_root) { NULL, } 140 #define rb_entry(ptr, type, member) container_of(ptr, type, member) 141 142 #define RB_EMPTY_ROOT(root) ((root)->rb_node == NULL) 143 #define RB_EMPTY_NODE(node) (rb_parent(node) == node) 144 #define RB_CLEAR_NODE(node) (rb_set_parent(node, node)) 145 146 static inline void rb_init_node(struct rb_node *rb) 147 { 148 rb->rb_parent_color = 0; 149 rb->rb_right = NULL; 150 rb->rb_left = NULL; 151 RB_CLEAR_NODE(rb); 152 } 153 154 extern void rb_insert_color(struct rb_node *, struct rb_root *); 155 extern void rb_erase(struct rb_node *, struct rb_root *); 156 157 typedef void (*rb_augment_f)(struct rb_node *node, void *data); 158 159 extern void rb_augment_insert(struct rb_node *node, 160 rb_augment_f func, void *data); 161 extern struct rb_node *rb_augment_erase_begin(struct rb_node *node); 162 extern void rb_augment_erase_end(struct rb_node *node, 163 rb_augment_f func, void *data); 164 165 /* Find logical next and previous nodes in a tree */ 166 extern struct rb_node *rb_next(const struct rb_node *); 167 extern struct rb_node *rb_prev(const struct rb_node *); 168 extern struct rb_node *rb_first(const struct rb_root *); 169 extern struct rb_node *rb_last(const struct rb_root *); 170 171 /* Fast replacement of a single node without remove/rebalance/add/rebalance */ 172 extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, 173 struct rb_root *root); 174 175 static inline void rb_link_node(struct rb_node * node, struct rb_node * parent, 176 struct rb_node ** rb_link) 177 { 178 node->rb_parent_color = (unsigned long )parent; 179 node->rb_left = node->rb_right = NULL; 180 181 *rb_link = node; 182 } 183 184 #endif /* _LINUX_RBTREE_H */
红黑树的实现文件(rbtree.c)
1 /* 2 Red Black Trees 3 (C) 1999 Andrea Arcangeli <andrea@suse.de> 4 (C) 2002 David Woodhouse <dwmw2@infradead.org> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 20 linux/lib/rbtree.c 21 */ 22 23 #include "rbtree.h" 24 25 static void __rb_rotate_left(struct rb_node *node, struct rb_root *root) 26 { 27 struct rb_node *right = node->rb_right; 28 struct rb_node *parent = rb_parent(node); 29 30 if ((node->rb_right = right->rb_left)) 31 rb_set_parent(right->rb_left, node); 32 right->rb_left = node; 33 34 rb_set_parent(right, parent); 35 36 if (parent) 37 { 38 if (node == parent->rb_left) 39 parent->rb_left = right; 40 else 41 parent->rb_right = right; 42 } 43 else 44 root->rb_node = right; 45 rb_set_parent(node, right); 46 } 47 48 static void __rb_rotate_right(struct rb_node *node, struct rb_root *root) 49 { 50 struct rb_node *left = node->rb_left; 51 struct rb_node *parent = rb_parent(node); 52 53 if ((node->rb_left = left->rb_right)) 54 rb_set_parent(left->rb_right, node); 55 left->rb_right = node; 56 57 rb_set_parent(left, parent); 58 59 if (parent) 60 { 61 if (node == parent->rb_right) 62 parent->rb_right = left; 63 else 64 parent->rb_left = left; 65 } 66 else 67 root->rb_node = left; 68 rb_set_parent(node, left); 69 } 70 71 void rb_insert_color(struct rb_node *node, struct rb_root *root) 72 { 73 struct rb_node *parent, *gparent; 74 75 while ((parent = rb_parent(node)) && rb_is_red(parent)) 76 { 77 gparent = rb_parent(parent); 78 79 if (parent == gparent->rb_left) 80 { 81 { 82 register struct rb_node *uncle = gparent->rb_right; 83 if (uncle && rb_is_red(uncle)) 84 { 85 rb_set_black(uncle); 86 rb_set_black(parent); 87 rb_set_red(gparent); 88 node = gparent; 89 continue; 90 } 91 } 92 93 if (parent->rb_right == node) 94 { 95 register struct rb_node *tmp; 96 __rb_rotate_left(parent, root); 97 tmp = parent; 98 parent = node; 99 node = tmp; 100 } 101 102 rb_set_black(parent); 103 rb_set_red(gparent); 104 __rb_rotate_right(gparent, root); 105 } else { 106 { 107 register struct rb_node *uncle = gparent->rb_left; 108 if (uncle && rb_is_red(uncle)) 109 { 110 rb_set_black(uncle); 111 rb_set_black(parent); 112 rb_set_red(gparent); 113 node = gparent; 114 continue; 115 } 116 } 117 118 if (parent->rb_left == node) 119 { 120 register struct rb_node *tmp; 121 __rb_rotate_right(parent, root); 122 tmp = parent; 123 parent = node; 124 node = tmp; 125 } 126 127 rb_set_black(parent); 128 rb_set_red(gparent); 129 __rb_rotate_left(gparent, root); 130 } 131 } 132 133 rb_set_black(root->rb_node); 134 } 135 136 static void __rb_erase_color(struct rb_node *node, struct rb_node *parent, 137 struct rb_root *root) 138 { 139 struct rb_node *other; 140 141 while ((!node || rb_is_black(node)) && node != root->rb_node) 142 { 143 if (parent->rb_left == node) 144 { 145 other = parent->rb_right; 146 if (rb_is_red(other)) 147 { 148 rb_set_black(other); 149 rb_set_red(parent); 150 __rb_rotate_left(parent, root); 151 other = parent->rb_right; 152 } 153 if ((!other->rb_left || rb_is_black(other->rb_left)) && 154 (!other->rb_right || rb_is_black(other->rb_right))) 155 { 156 rb_set_red(other); 157 node = parent; 158 parent = rb_parent(node); 159 } 160 else 161 { 162 if (!other->rb_right || rb_is_black(other->rb_right)) 163 { 164 rb_set_black(other->rb_left); 165 rb_set_red(other); 166 __rb_rotate_right(other, root); 167 other = parent->rb_right; 168 } 169 rb_set_color(other, rb_color(parent)); 170 rb_set_black(parent); 171 rb_set_black(other->rb_right); 172 __rb_rotate_left(parent, root); 173 node = root->rb_node; 174 break; 175 } 176 } 177 else 178 { 179 other = parent->rb_left; 180 if (rb_is_red(other)) 181 { 182 rb_set_black(other); 183 rb_set_red(parent); 184 __rb_rotate_right(parent, root); 185 other = parent->rb_left; 186 } 187 if ((!other->rb_left || rb_is_black(other->rb_left)) && 188 (!other->rb_right || rb_is_black(other->rb_right))) 189 { 190 rb_set_red(other); 191 node = parent; 192 parent = rb_parent(node); 193 } 194 else 195 { 196 if (!other->rb_left || rb_is_black(other->rb_left)) 197 { 198 rb_set_black(other->rb_right); 199 rb_set_red(other); 200 __rb_rotate_left(other, root); 201 other = parent->rb_left; 202 } 203 rb_set_color(other, rb_color(parent)); 204 rb_set_black(parent); 205 rb_set_black(other->rb_left); 206 __rb_rotate_right(parent, root); 207 node = root->rb_node; 208 break; 209 } 210 } 211 } 212 if (node) 213 rb_set_black(node); 214 } 215 216 void rb_erase(struct rb_node *node, struct rb_root *root) 217 { 218 struct rb_node *child, *parent; 219 int color; 220 221 if (!node->rb_left) 222 child = node->rb_right; 223 else if (!node->rb_right) 224 child = node->rb_left; 225 else 226 { 227 struct rb_node *old = node, *left; 228 229 node = node->rb_right; 230 while ((left = node->rb_left) != NULL) 231 node = left; 232 233 if (rb_parent(old)) { 234 if (rb_parent(old)->rb_left == old) 235 rb_parent(old)->rb_left = node; 236 else 237 rb_parent(old)->rb_right = node; 238 } else 239 root->rb_node = node; 240 241 child = node->rb_right; 242 parent = rb_parent(node); 243 color = rb_color(node); 244 245 if (parent == old) { 246 parent = node; 247 } else { 248 if (child) 249 rb_set_parent(child, parent); 250 parent->rb_left = child; 251 252 node->rb_right = old->rb_right; 253 rb_set_parent(old->rb_right, node); 254 } 255 256 node->rb_parent_color = old->rb_parent_color; 257 node->rb_left = old->rb_left; 258 rb_set_parent(old->rb_left, node); 259 260 goto color; 261 } 262 263 parent = rb_parent(node); 264 color = rb_color(node); 265 266 if (child) 267 rb_set_parent(child, parent); 268 if (parent) 269 { 270 if (parent->rb_left == node) 271 parent->rb_left = child; 272 else 273 parent->rb_right = child; 274 } 275 else 276 root->rb_node = child; 277 278 color: 279 if (color == RB_BLACK) 280 __rb_erase_color(child, parent, root); 281 } 282 283 static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data) 284 { 285 struct rb_node *parent; 286 287 up: 288 func(node, data); 289 parent = rb_parent(node); 290 if (!parent) 291 return; 292 293 if (node == parent->rb_left && parent->rb_right) 294 func(parent->rb_right, data); 295 else if (parent->rb_left) 296 func(parent->rb_left, data); 297 298 node = parent; 299 goto up; 300 } 301 302 /* 303 * after inserting @node into the tree, update the tree to account for 304 * both the new entry and any damage done by rebalance 305 */ 306 void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data) 307 { 308 if (node->rb_left) 309 node = node->rb_left; 310 else if (node->rb_right) 311 node = node->rb_right; 312 313 rb_augment_path(node, func, data); 314 } 315 316 /* 317 * before removing the node, find the deepest node on the rebalance path 318 * that will still be there after @node gets removed 319 */ 320 struct rb_node *rb_augment_erase_begin(struct rb_node *node) 321 { 322 struct rb_node *deepest; 323 324 if (!node->rb_right && !node->rb_left) 325 deepest = rb_parent(node); 326 else if (!node->rb_right) 327 deepest = node->rb_left; 328 else if (!node->rb_left) 329 deepest = node->rb_right; 330 else { 331 deepest = rb_next(node); 332 if (deepest->rb_right) 333 deepest = deepest->rb_right; 334 else if (rb_parent(deepest) != node) 335 deepest = rb_parent(deepest); 336 } 337 338 return deepest; 339 } 340 341 /* 342 * after removal, update the tree to account for the removed entry 343 * and any rebalance damage. 344 */ 345 void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data) 346 { 347 if (node) 348 rb_augment_path(node, func, data); 349 } 350 351 /* 352 * This function returns the first node (in sort order) of the tree. 353 */ 354 struct rb_node *rb_first(const struct rb_root *root) 355 { 356 struct rb_node *n; 357 358 n = root->rb_node; 359 if (!n) 360 return NULL; 361 while (n->rb_left) 362 n = n->rb_left; 363 return n; 364 } 365 366 struct rb_node *rb_last(const struct rb_root *root) 367 { 368 struct rb_node *n; 369 370 n = root->rb_node; 371 if (!n) 372 return NULL; 373 while (n->rb_right) 374 n = n->rb_right; 375 return n; 376 } 377 378 struct rb_node *rb_next(const struct rb_node *node) 379 { 380 struct rb_node *parent; 381 382 if (rb_parent(node) == node) 383 return NULL; 384 385 /* If we have a right-hand child, go down and then left as far 386 as we can. */ 387 if (node->rb_right) { 388 node = node->rb_right; 389 while (node->rb_left) 390 node=node->rb_left; 391 return (struct rb_node *)node; 392 } 393 394 /* No right-hand children. Everything down and left is 395 smaller than us, so any 'next' node must be in the general 396 direction of our parent. Go up the tree; any time the 397 ancestor is a right-hand child of its parent, keep going 398 up. First time it's a left-hand child of its parent, said 399 parent is our 'next' node. */ 400 while ((parent = rb_parent(node)) && node == parent->rb_right) 401 node = parent; 402 403 return parent; 404 } 405 406 struct rb_node *rb_prev(const struct rb_node *node) 407 { 408 struct rb_node *parent; 409 410 if (rb_parent(node) == node) 411 return NULL; 412 413 /* If we have a left-hand child, go down and then right as far 414 as we can. */ 415 if (node->rb_left) { 416 node = node->rb_left; 417 while (node->rb_right) 418 node=node->rb_right; 419 return (struct rb_node *)node; 420 } 421 422 /* No left-hand children. Go up till we find an ancestor which 423 is a right-hand child of its parent */ 424 while ((parent = rb_parent(node)) && node == parent->rb_left) 425 node = parent; 426 427 return parent; 428 } 429 430 void rb_replace_node(struct rb_node *victim, struct rb_node *new, 431 struct rb_root *root) 432 { 433 struct rb_node *parent = rb_parent(victim); 434 435 /* Set the surrounding nodes to point to the replacement */ 436 if (parent) { 437 if (victim == parent->rb_left) 438 parent->rb_left = new; 439 else 440 parent->rb_right = new; 441 } else { 442 root->rb_node = new; 443 } 444 if (victim->rb_left) 445 rb_set_parent(victim->rb_left, new); 446 if (victim->rb_right) 447 rb_set_parent(victim->rb_right, new); 448 449 /* Copy the pointers/colour from the victim to the replacement */ 450 *new = *victim; 451 }
红黑树的测试文件(test.c)
1 /** 2 * 根据Linux Kernel定义的红黑树(Red Black Tree) 3 * 4 * @author skywang 5 * @date 2013/11/18 6 */ 7 8 #include <stdio.h> 9 #include <stdlib.h> 10 #include "rbtree.h" 11 12 #define CHECK_INSERT 0 // "插入"动作的检测开关(0,关闭;1,打开) 13 #define CHECK_DELETE 0 // "删除"动作的检测开关(0,关闭;1,打开) 14 #define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) ) 15 16 typedef int Type; 17 18 struct my_node { 19 struct rb_node rb_node; // 红黑树节点 20 Type key; // 键值 21 // ... 用户自定义的数据 22 }; 23 24 /* 25 * 查找"红黑树"中键值为key的节点。没找到的话,返回NULL。 26 */ 27 struct my_node *my_search(struct rb_root *root, Type key) 28 { 29 struct rb_node *rbnode = root->rb_node; 30 31 while (rbnode!=NULL) 32 { 33 struct my_node *mynode = container_of(rbnode, struct my_node, rb_node); 34 35 if (key < mynode->key) 36 rbnode = rbnode->rb_left; 37 else if (key > mynode->key) 38 rbnode = rbnode->rb_right; 39 else 40 return mynode; 41 } 42 43 return NULL; 44 } 45 46 /* 47 * 将key插入到红黑树中。插入成功,返回0;失败返回-1。 48 */ 49 int my_insert(struct rb_root *root, Type key) 50 { 51 struct my_node *mynode; // 新建结点 52 struct rb_node **tmp = &(root->rb_node), *parent = NULL; 53 54 /* Figure out where to put new node */ 55 while (*tmp) 56 { 57 struct my_node *my = container_of(*tmp, struct my_node, rb_node); 58 59 parent = *tmp; 60 if (key < my->key) 61 tmp = &((*tmp)->rb_left); 62 else if (key > my->key) 63 tmp = &((*tmp)->rb_right); 64 else 65 return -1; 66 } 67 68 // 如果新建结点失败,则返回。 69 if ((mynode=malloc(sizeof(struct my_node))) == NULL) 70 return -1; 71 mynode->key = key; 72 73 /* Add new node and rebalance tree. */ 74 rb_link_node(&mynode->rb_node, parent, tmp); 75 rb_insert_color(&mynode->rb_node, root); 76 77 return 0; 78 } 79 80 /* 81 * 删除键值为key的结点 82 */ 83 void my_delete(struct rb_root *root, Type key) 84 { 85 struct my_node *mynode; 86 87 // 在红黑树中查找key对应的节点mynode 88 if ((mynode = my_search(root, key)) == NULL) 89 return ; 90 91 // 从红黑树中删除节点mynode 92 rb_erase(&mynode->rb_node, root); 93 free(mynode); 94 } 95 96 /* 97 * 打印"红黑树" 98 */ 99 static void print_rbtree(struct rb_node *tree, Type key, int direction) 100 { 101 if(tree != NULL) 102 { 103 if(direction==0) // tree是根节点 104 printf("%2d(B) is root\n", key); 105 else // tree是分支节点 106 printf("%2d(%s) is %2d's %6s child\n", key, rb_is_black(tree)?"B":"R", key, direction==1?"right" : "left"); 107 108 if (tree->rb_left) 109 print_rbtree(tree->rb_left, rb_entry(tree->rb_left, struct my_node, rb_node)->key, -1); 110 if (tree->rb_right) 111 print_rbtree(tree->rb_right,rb_entry(tree->rb_right, struct my_node, rb_node)->key, 1); 112 } 113 } 114 115 void my_print(struct rb_root *root) 116 { 117 if (root!=NULL && root->rb_node!=NULL) 118 print_rbtree(root->rb_node, rb_entry(root->rb_node, struct my_node, rb_node)->key, 0); 119 } 120 121 122 void main() 123 { 124 int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80}; 125 int i, ilen=LENGTH(a); 126 struct rb_root mytree = RB_ROOT; 127 128 printf("== 原始数据: "); 129 for(i=0; i<ilen; i++) 130 printf("%d ", a[i]); 131 printf("\n"); 132 133 for (i=0; i < ilen; i++) 134 { 135 my_insert(&mytree, a[i]); 136 #if CHECK_INSERT 137 printf("== 添加节点: %d\n", a[i]); 138 printf("== 树的详细信息: \n"); 139 my_print(&mytree); 140 printf("\n"); 141 #endif 142 143 } 144 145 #if CHECK_DELETE 146 for (i=0; i<ilen; i++) { 147 my_delete(&mytree, a[i]); 148 149 printf("== 删除节点: %d\n", a[i]); 150 printf("== 树的详细信息: \n"); 151 my_print(&mytree); 152 printf("\n"); 153 } 154 #endif 155 }
rbtree.h和rbtree.c基本上是从Linux 3.0的Kernel中移植出来的。仅仅只添加了offestof和container_of两个宏,这两个宏在文章"Linux内核中双向链表的经典实现"中已经介绍过了,这里就不再重复说明了。
test.c中包含了两部分内容:一是,基于内核红黑树接口,自定义的一个结构体,并提供了相应的接口(添加、删除、搜索、打印)。二是,包含了相应的测试程序。