研磨设计模式之 单例模式-3
3.3 延迟加载的思想
单例模式的懒汉式实现方式体现了延迟加载的思想,什么是延迟加载呢?
通俗点说,就是一开始不要加载资源或者数据,一直等,等到马上就要使用这个资源或者数据了,躲不过去了才加载,所以也称Lazy Load,不是懒惰啊,是“延迟加载”,这在实际开发中是一种很常见的思想,尽可能的节约资源。
体现在什么地方呢?看如下代码:
3.4 缓存的思想
单例模式的懒汉式实现还体现了缓存的思想,缓存也是实际开发中非常常见的功能。
简单讲就是,如果某些资源或者数据会被频繁的使用,而这些资源或数据存储在系统外部,比如数据库、硬盘文件等,那么每次操作这些数据的时候都从数据库或者硬盘上去获取,速度会很慢,会造成性能问题。
一个简单的解决方法就是:把这些数据缓存到内存里面,每次操作的时候,先到内存里面找,看有没有这些数据,如果有,那么就直接使用,如果没有那么就获取它,并设置到缓存中,下一次访问的时候就可以直接从内存中获取了。从而节省大量的时间,当然,缓存是一种典型的空间换时间的方案。
缓存在单例模式的实现中怎么体现的呢?
3.5 Java中缓存的基本实现
引申一下,看看在Java开发中的缓存的基本实现,在Java中最常见的一种实现缓存的方式就是使用Map,基本的步骤是:
- 先到缓存里面查找,看看是否存在需要使用的数据
- 如果没有找到,那么就创建一个满足要求的数据,然后把这个数据设置回到缓存中,以备下次使用
- 如果找到了相应的数据,或者是创建了相应的数据,那就直接使用这个数据。
还是看看示例吧,示例代码如下:
/** * Java中缓存的基本实现示例 */ public class JavaCache { /** * 缓存数据的容器,定义成Map是方便访问,直接根据Key就可以获取Value了 * key选用String是为了简单,方便演示 */ private Map<String,Object> map = new HashMap<String,Object>(); /** * 从缓存中获取值 * @param key 设置时候的key值 * @return key对应的Value值 */ public Object getValue(String key){ //先从缓存里面取值 Object obj = map.get(key); //判断缓存里面是否有值 if(obj == null){ //如果没有,那么就去获取相应的数据,比如读取数据库或者文件 //这里只是演示,所以直接写个假的值 obj = key+",value"; //把获取的值设置回到缓存里面 map.put(key, obj); } //如果有值了,就直接返回使用 return obj; } }
这里只是缓存的基本实现,还有很多功能都没有考虑,比如缓存的清除,缓存的同步等等。当然,Java的缓存还有很多实现方式,也是非常复杂的,现在有很多专业的缓存框架,更多缓存的知识,这里就不再去讨论了。
3.6 利用缓存来实现单例模式
其实应用Java缓存的知识,也可以变相实现Singleton模式,算是一个模拟实现吧。每次都先从缓存中取值,只要创建一次对象实例过后,就设置了缓存的值,那么下次就不用再创建了。
虽然不是很标准的做法,但是同样可以实现单例模式的功能,为了简单,先不去考虑多线程的问题,示例代码如下:
/** * 使用缓存来模拟实现单例 */ public class Singleton { /** * 定义一个缺省的key值,用来标识在缓存中的存放 */ private final static String DEFAULT_KEY = "One"; /** * 缓存实例的容器 */ private static Map<String,Singleton> map = new HashMap<String,Singleton>(); /** * 私有化构造方法 */ private Singleton(){ // } public static Singleton getInstance(){ //先从缓存中获取 Singleton instance = (Singleton)map.get(DEFAULT_KEY); //如果没有,就新建一个,然后设置回缓存中 if(instance==null){ instance = new Singleton(); map.put(DEFAULT_KEY, instance); } //如果有就直接使用 return instance; } }
是不是也能实现单例所要求的功能呢?其实实现模式的方式有很多种,并不是只有模式的参考实现所实现的方式,上面这种也能实现单例所要求的功能,只不过实现比较麻烦,不是太好而已,但在后面扩展单例模式的时候会有用。
另外,模式是经验的积累,模式的参考实现并不一定是最优的,对于单例模式,后面会给大家一些更好的实现方式。
3.7 单例模式的优缺点
1:时间和空间
比较上面两种写法:懒汉式是典型的时间换空间,也就是每次获取实例都会进行判断,看是否需要创建实例,费判断的时间,当然,如果一直没有人使用的话,那就不会创建实例,节约内存空间。
饿汉式是典型的空间换时间,当类装载的时候就会创建类实例,不管你用不用,先创建出来,然后每次调用的时候,就不需要再判断了,节省了运行时间。
2:线程安全
(1)从线程安全性上讲,不加同步的懒汉式是线程不安全的,比如说:有两个线程,一个是线程A,一个是线程B,它们同时调用getInstance方法,那就可能导致并发问题。如下示例:
程序继续运行,两个线程都向前走了一步,如下:
可能有些朋友会觉得文字描述还是不够直观,再来画个图说明一下,如图4所示:
图4 懒汉式单例的线程问题示意图
通过图4的分解描述,明显可以看出,当A、B线程并发的情况下,会创建出两个实例来,也就是单例的控制在并发情况下失效了。
(2)饿汉式是线程安全的,因为虚拟机保证了只会装载一次,在装载类的时候是不会发生并发的。
(3)如何实现懒汉式的线程安全呢?
当然懒汉式也是可以实现线程安全的,只要加上synchronized即可,如下:
public static synchronized Singleton getInstance(){}
但是这样一来,会降低整个访问的速度,而且每次都要判断,也确实是稍微慢点。那么有没有更好的方式来实现呢?
(4)双重检查加锁
可以使用“双重检查加锁”的方式来实现,就可以既实现线程安全,又能够使性能不受到大的影响。那么什么是“双重检查加锁”机制呢?
所谓双重检查加锁机制,指的是:并不是每次进入getInstance方法都需要同步,而是先不同步,进入方法过后,先检查实例是否存在,如果不存在才进入下面的同步块,这是第一重检查。进入同步块过后,再次检查实例是否存在,如果不存在,就在同步的情况下创建一个实例,这是第二重检查。这样一来,就只需要同步一次了,从而减少了多次在同步情况下进行判断所浪费的时间。
双重检查加锁机制的实现会使用一个关键字volatile,它的意思是:被volatile修饰的变量的值,将不会被本地线程缓存,所有对该变量的读写都是直接操作共享内存,从而确保多个线程能正确的处理该变量。
注意:在Java1.4及以前版本中,很多JVM对于volatile关键字的实现有问题,会导致双重检查加锁的失败,因此双重检查加锁的机制只能用在Java5及以上的版本。
看看代码可能会更清楚些,示例代码如下:
public class Singleton { /** * 对保存实例的变量添加volatile的修饰 */ private volatile static Singleton instance = null; private Singleton(){ } public static Singleton getInstance(){ //先检查实例是否存在,如果不存在才进入下面的同步块 if(instance == null){ //同步块,线程安全的创建实例 synchronized(Singleton.class){ //再次检查实例是否存在,如果不存在才真的创建实例 if(instance == null){ instance = new Singleton(); } } } return instance; } }
这种实现方式既可使实现线程安全的创建实例,又不会对性能造成太大的影响,它只是在第一次创建实例的时候同步,以后就不需要同步了,从而加快运行速度。
提示:由于volatile关键字可能会屏蔽掉虚拟机中一些必要的代码优化,所以运行效率并不是很高,因此一般建议,没有特别的需要,不要使用。也就是说,虽然可以使用双重加锁机制来实现线程安全的单例,但并不建议大量采用,根据情况来选用吧。
未完待续