MapReduce生成HFile入库到HBase
个人小站,正在持续整理中,欢迎访问:http://shitouer.cn
小站博文地址:MapReduce生成HFile入库到HBase
一、这种方式有很多的优点:
1. 如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类。
2. 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载。
二、这种方式也有很大的限制:
1. 仅适合初次数据导入,即表内数据为空,或者每次入库表内都无数据的情况。
2. HBase集群与Hadoop集群为同一集群,即HBase所基于的HDFS为生成HFile的MR的集群(额,咋表述~~~)
三、接下来一个demo,简单介绍整个过程。
1. 生成HFile部分
package zl.hbase.mr; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat; import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer; import org.apache.hadoop.hbase.mapreduce.SimpleTotalOrderPartitioner; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import zl.hbase.util.ConnectionUtil; public class HFileGenerator { public static class HFileMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] items = line.split(",", -1); ImmutableBytesWritable rowkey = new ImmutableBytesWritable( items[0].getBytes()); KeyValue kv = new KeyValue(Bytes.toBytes(items[0]), Bytes.toBytes(items[1]), Bytes.toBytes(items[2]), System.currentTimeMillis(), Bytes.toBytes(items[3])); if (null != kv) { context.write(rowkey, kv); } } } public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new Configuration(); String[] dfsArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); Job job = new Job(conf, "HFile bulk load test"); job.setJarByClass(HFileGenerator.class); job.setMapperClass(HFileMapper.class); job.setReducerClass(KeyValueSortReducer.class); job.setMapOutputKeyClass(ImmutableBytesWritable.class); job.setMapOutputValueClass(Text.class); job.setPartitionerClass(SimpleTotalOrderPartitioner.class); FileInputFormat.addInputPath(job, new Path(dfsArgs[0])); FileOutputFormat.setOutputPath(job, new Path(dfsArgs[1])); HFileOutputFormat.configureIncrementalLoad(job, ConnectionUtil.getTable()); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
生成HFile程序说明:
①. 最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
②. 最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。
③. MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件。
④. MR例子中HFileOutputFormat.configureIncrementalLoad(job, table);自动对job进行配置。SimpleTotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。
⑤. MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。
2. HFile入库到HBase
package zl.hbase.bulkload; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles; import org.apache.hadoop.util.GenericOptionsParser; import zl.hbase.util.ConnectionUtil; public class HFileLoader { public static void main(String[] args) throws Exception { String[] dfsArgs = new GenericOptionsParser( ConnectionUtil.getConfiguration(), args).getRemainingArgs(); LoadIncrementalHFiles loader = new LoadIncrementalHFiles( ConnectionUtil.getConfiguration()); loader.doBulkLoad(new Path(dfsArgs[0]), ConnectionUtil.getTable()); } }
通过HBase中 LoadIncrementalHFiles的doBulkLoad方法,对生成的HFile文件入库
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://shitouer.cn/2013/02/hbase-hfile-bulk-load/