SHIHUC

好记性不如烂笔头,还可以分享给别人看看! 专注基础算法,互联网架构,人工智能领域的技术实现和应用。
  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

排序算法<No.3>【桶排序】

Posted on 2017-01-23 16:24  shihuc  阅读(3080)  评论(2编辑  收藏  举报

算法,是永恒的技能,今天继续算法篇,将研究桶排序。

 

算法思想:

桶排序,其思想非常简单易懂,就是是将一个数据表分割成许多小数据集,每个数据集对应于一个新的集合(也就是所谓的桶bucket),然后每个bucket各自排序,或用不同的排序算法,或者递归的使用bucket sort算法,往往采用快速排序。是一个典型的divide-and-conquer分而治之的策略。

 

其中核心思想在于如何将原始待排序的数据划分到不同的桶中,也就是数据映射过程f(x)的定义,这个f(x)关乎桶数据的平衡性(各个桶内的数据尽量数量不要差异太大),也关乎桶排序能处理的数据类型(整形,浮点型;只能正数,或者正负数都可以)

 

另外,桶排序的具体实现,需要考虑实际的应用场景,因为很难找到一个通吃天下的f(x)。

 

基本实现步骤:

1. 根据数据类型,定义数据映射函数f(x)

2. 对数据进行分别规划进入桶内

3. 对桶做基于序号的排序

4. 对每个桶内的数据进行排序(快排或者其他排序算法)

5. 将排序后的数据映射到原始输入数组中,作为输出

 

桶排序,通常情况下速度非常快,比快速排序还要快,但是,依据我的理解,这个快,应该是建立在大数据量的排序。若待排序的数据元素个数比较少,桶排序的优势就不是那么明显了,因为桶排序就是基于分而治之的策略,可以将数据进行分布式排序,充分发挥并行计算的优势。

 

特性说明:

1. 桶排序的时间复杂度通常是O(N+N*logM),其中,N表示桶的个数,M表示桶内元素的个数(这里,M取的是一个大概的平均数,这也说明,为何桶内的元素尽量不要出现有的很多,有的很少这种分布不均的事情,分布不均的话,算法的性能优势就不能最大发挥)。

2. 桶排序是稳定的(是可以做到平衡排序的)。

3. 桶排序,在内存方面消耗是比较大的,可以说其时间性能优势是由牺牲空间换来的。

 

下面,我们直接上代码,我的实现过程中,考虑了数据的重复性,考虑到了数据有正有负的情况!

  1 /**
  2  * @author "shihuc"
  3  * @date   2017年1月17日
  4  */
  5 package bucketSort;
  6 
  7 import java.io.File;
  8 import java.io.FileNotFoundException;
  9 import java.util.ArrayList;
 10 import java.util.HashMap;
 11 import java.util.Scanner;
 12 
 13 /**
 14  * @author shihuc
 15  * 
 16  * 桶排序的实现过程,算法中考虑到了元素的重复性
 17  */
 18 public class BucketSortDemo {
 19     
 20     /**
 21      * @param args
 22      */
 23     public static void main(String[] args) {
 24         File file = new File("./src/bucketSort/sample.txt");
 25         Scanner sc = null;
 26         try {
 27             sc = new Scanner(file);
 28             //获取测试例的个数
 29             int T = sc.nextInt();
 30             for(int i=0; i<T; i++){
 31                 //获取每个测试例的元素个数
 32                 int N = sc.nextInt();
 33                 //获取桶的个数
 34                 int M = sc.nextInt();                                
 35                 int A[] = new int[N];
 36                 for(int j=0; j<N; j++){
 37                     A[j] = sc.nextInt();
 38                 }    
 39                 bucketSort(A, M);
 40                 printResult(i, A);
 41             }
 42         } catch (FileNotFoundException e) {            
 43             e.printStackTrace();
 44         } finally {
 45             if(sc != null){
 46                 sc.close();
 47             }
 48         }
 49     }
 50     
 51     /**
 52      * 计算输入元素经过桶的个数(M)求商运算后,存入那个桶中,得到桶的下标索引。
 53      * 步骤1
 54      * 注意:
 55      * 这个方法,其实就是桶排序中的相对核心的部分,也就是常说的待排序数组与桶之间的映射规则f(x)的定义部分。 
 56      * 这个映射规则,对于桶排序算法的不同实现版本,规则函数不同。
 57      * 
 58      * @param elem 原始输入数组中的元素值
 59      * @param m 桶的商数(影响桶的个数)
 60      * @return 桶的索引号(编号)
 61      */
 62     private static int getBucketIndex(int elem, int m){        
 63         return elem / m;
 64     }
 65     
 66     private static void bucketSort(int src[], int m){
 67         //定义一个初步排序的桶与原始数据大小的映射关系
 68         HashMap<Integer, ArrayList<Integer>> buckets = new HashMap<Integer, ArrayList<Integer>>();
 69         
 70         //规划数据入桶  步骤2】              
 71         programBuckets(src, m, buckets);
 72         
 73         //对桶基于桶的标号进行排序(序号可能是负数)【步骤3】
 74         Integer bkIdx[] = new Integer[buckets.keySet().size()];
 75         buckets.keySet().toArray(bkIdx);
 76         quickSort(bkIdx, 0, bkIdx.length - 1);
 77         
 78         //计算每个桶对应于输出数组空间的其实位置
 79         HashMap<Integer, Integer> bucketIdxPosMap = new HashMap<Integer, Integer>();
 80         int startPos = 0;
 81         for(Integer idx: bkIdx){
 82             bucketIdxPosMap.put(idx, startPos);
 83             startPos += buckets.get(idx).size();
 84         }
 85         
 86         //对桶内的数据采取快速排序,并将排序后的结果映射到原始数组中作为输出
 87         for(Integer bId : buckets.keySet()){
 88             ArrayList<Integer> bk = buckets.get(bId);
 89             Integer[] org = new Integer[bk.size()];
 90             bk.toArray(org);            
 91             quickSort(org, 0, bk.size() - 1); //对桶内数据进行排序 【步骤4】
 92             //将排序后的数据映射到原始数组中作为输出 【步骤5】
 93             int stPos = bucketIdxPosMap.get(bId); 
 94             for(int i=0; i<org.length; i++){
 95                 src[stPos++] = org[i];
 96             }
 97         }        
 98     }
 99     
100     /**
101      * 基于原始数据和桶的个数,对数据进行入桶规划。
102      * 
103      * 这个过程,就体现了divide-and-conquer的思想
104      * 
105      * @param src
106      * @param m
107      * @param buckets
108      */
109     private static void programBuckets(int[] src, int m, HashMap<Integer, ArrayList<Integer>> buckets) {
110         for(int i=0; i<src.length; i++){
111             int bucketIdx = getBucketIndex(src[i], m);
112             
113             ArrayList<Integer> bucket = buckets.get(bucketIdx);
114             if(bucket == null){
115                 //定义桶,用来存放初步划分好的原始数据
116                 bucket = new ArrayList<Integer>();
117                 buckets.put(bucketIdx, bucket);
118             }
119             bucket.add(src[i]);
120         }
121     }
122     
123     /**
124      * 采用类似两边夹逼的方式,向输入数组的中间某个位置夹逼,将原输入数组进行分割成两部分,左边的部分全都小于某个值,
125      * 右边的部分全都大于某个值。
126      * 
127      * 快排算法的核心部分。
128      * 
129      * @param src 待排序数组
130      * @param start 数组的起点索引
131      * @param end 数组的终点索引
132      * @return 中值索引
133      */
134     private static int middle(Integer src[], int start, int end){
135         int middleValue = src[start];
136         while(start < end){
137             //找到右半部分都比middleValue大的分界点
138             while(src[end] >= middleValue && start < end){
139                 end--;
140             }
141             //当遇到比middleValue小的时候或者start不再小于end,将比较的起点值替换为新的最小值起点            
142             src[start] = src[end];            
143             //找到左半部分都比middleValue小的分界点
144             while(src[start] <= middleValue && start < end){
145                 start++;
146             }
147             //当遇到比middleValue大的时候或者start不再小于end,将比较的起点值替换为新的终值起点
148             src[end] = src[start];            
149         }
150         //当找到了分界点后,将比较的中值进行交换,将中值放在start与end之间的分界点上,完成一次对原数组分解,左边都小于middleValue,右边都大于middleValue
151         src[start] = middleValue;
152         return start;
153     }
154     
155     /**
156      * 通过递归的方式,对原始输入数组,进行快速排序。
157      * 
158      * @param src 待排序的数组
159      * @param st 数组的起点索引
160      * @param nd 数组的终点索引
161      */
162     public static void quickSort(Integer src[], int st, int nd){
163         
164         if(st > nd){
165             return;
166         }
167         int middleIdx = middle(src, st, nd);
168         //将分隔后的数组左边部分进行快排
169         quickSort(src, st, middleIdx - 1);
170         //将分隔后的数组右半部分进行快排
171         quickSort(src, middleIdx + 1, nd);
172     }
173 
174     /**
175      * 打印最终的输出结果
176      * 
177      * @param idx 测试例的编号
178      * @param B 待输出数组
179      */
180     private static void printResult(int idx, int B[]){
181         System.out.print(idx + "--> ");
182         for(int i=0; i<B.length; i++){
183             System.out.print(B[i] + "  ");
184         }
185         System.out.println();
186     }
187 }

 

下面附上测试用到的数据:

1 3
2 9 2
3 2 3 1 4 6 -10 8 11 -21
4 15 5
5 2 6 3 4 5 10 9 21 17 31 1 2 21 11 18
6 9 4
7 2 3 1 4 6 -10 8 11 -21

上面第1行表示有几个测试案例,第二行表示第一个测试案例的熟悉数据,15表示案例元素个数,5表示桶商数(对参与排序的桶的个数有影响)。第3行表示第一个测试案例的待排序数据,第4第5行参照第2和第3行理解。

 

运行的结果如下:

1 0--> -21  -10  1  2  3  4  6  8  11  
2 1--> 1  2  2  3  4  5  6  9  10  11  17  18  21  21  31  
3 2--> -21  -10  1  2  3  4  6  8  11

 

下面附上一个上述测试案例中的一个,通过图示展示算法逻辑

 

上述算法实现过程中,桶的个数没有直接指定,是有桶的商数决定的。当然,也可以根据实际场景,指定桶的个数,与此同时,算法的实现过程就要做相应的修改,但是整体的思想是没有什么本质差别的。

桶排序,其优势在于处理大数据量的排序场景,数据相对比较集中,这样性能优势很明显。