TOJ-1341 Let it Bead

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.

A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

Input Specification

Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs≤32, i.e. their product does not exceed 32.

Output Specification

For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

 

Sample Input

 

1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0

Sample Output

 

1
2
3
5
8
13
21


Source: University of Ulm Local Contest 2000

 


 

这道题用到组合数学中的polya定理。关于群论的知识我只是在之前学离散数学还是密码学时浅尝辄止,到用的时候也是捉襟见肘。

  

  Polya定理:设G={π1,π2,π3........πn}是X={a1,a2,a3.......an}上一个置换群,用m中颜色对X中的元素进行涂色,那么不同的涂色方案数为:

  (mC(π1)+mC(π2)+mC(π3)+...+mC(πk))/|G|. 其中C(πk)为置换πk的循环节的个数。

 

以我目前的水平分析这个抽象的公式实在是毫无办法,我稍微分享一下我的局限的结合题目的理解。

这道题可以理解为是用c种颜色给环状摆放的珠子着色,并且如果两种着色方案可以通过旋转或者翻转珠子的摆放互相变换,则只能算一种着色,求总共的着色种数。

 

举一个简单的例子,用c种颜色给摆成正方形的4个珠子着色。4个珠子标号1,2,3,4。显然有如下8种置换(从左上顶点处顺时针):

    1. 1234  2. 4123  3. 3412  4. 2341 (旋转置换)

    5. 1432  6. 3214  7. 4321  8. 2143 (翻转置换)

  对置换1的4个珠子着c种颜色考虑标号不同有c^4种,在本题中,着色rgbw与着色gbwr只能算是同一种(置换1变换为2),所以对这种着色种数除以置换数即为本

题着色种数(即公式中分母的|G|)。但是有的着色方案比如rrrr,在所有的置换中情况都是一样的,在本题中应算做一种着色,然而我们在计算c^4/|G|时,把这种着色

的计数变为了1/8。这种问题是出现在各种置换间变换中由循环节引起的着色数丢失。解决办法就是在分子上把丢掉的计数补上,比如着色rrrr,应在分子上为2到7每种

置换加1,则除以|G|得到的即为本题中其应为的着色种数。

  对于旋转置换2-4,将其与置换1上下对齐,置换1的一个数对应另一个置换中同位置的一个数,则两个置换对应的数会构成循环节,如置换1和2,珠子1,2,3,4构

成一个循环节;置换1和3,珠子1和3,2和4构成2个循环节。对于置换1和其他旋转置换的循环节着相同的颜色,两种置换中情况相同,故对一个旋转置换,应在分子上加

c^k,k为该置换循环节数。

  对于翻转置换,若以对角线和对边中位线为轴翻转,各有2种翻转。以对角线为轴,则两对角顶点各为一个循环节,其他每一对对称点为一个循环节;以对边中位线为

轴,每一对对称点为一个循环节。若是奇数边正多边形,以顶点及其对边中点连线为轴。

  对于置换1和其他置换的循环节着相同的颜色,两种置换中情况相同,故对一个置换,应在分子上加c^k,k为该置换循环节数。

  以上即为对Polya定理在本题中的理解。

  同时我们得知,在已知颜色数c和珠子数n的情况下,我们只需求珠子摆成正n边形的置换数和各种置换的循环节数即可求解此题。

  显然对于n,旋转置换算及初始摆放顺序(如上例置换1)共n种,若某种置换是初始顺序旋转i次所得,其循环节数为gcd(n,i)。翻转置换数也为n,且若n为奇数,每

种置换有(n+1)/2个循环节;若n为偶数,以对角线和对边中位线为轴翻转两类置换各n/2种,分别有n/2+1和n/2个循环节。

  

  总结公式即为ans = (∑(i=1,n)c^gcd(n,i) + n*c^(n+1)/2)/2n  ……n为奇数

 

        ans = (∑(i=1,n)c^gcd(n,i) + (n/2)*(c^(n/2+1)+c^(n/2)))/2n  ……n为偶数

 

#include <iostream>   
using namespace std;
  
int c,n; 
int ans;  
int gcd(int a,int b)  
{  
    return b==0?a:gcd(b,a%b);  
}  
int power(int a,int n)  
{  
    int t=1;  
    while(n)  
    {  
        if(n&1)  
            t*=a;  
        a*=a;  
        n/=2;  
    }  
    return t;  
}  
  
int main(){  
    int c,n,ans; 
    while(cin>>c>>n,c,n)  
    {  
        ans=0;  
        for(int i=1;i<=n;i++)//旋转时有n个置换群  
            ans+=power(c,gcd(n,i));
        //翻转时  
        if(n&1)//是奇数,有n个包含(n/2+1)个循环节的循环群  
            ans+=n*power(c,n/2+1);  
        else  
            ans+=(power(c,n/2+1)+power(c,n/2))*(n/2);  
        ans/=2*n;//除以置换的总数  
        cout<<ans<<endl;  
    }  
    return 0;  
}  

 

posted @ 2017-02-08 13:43  DGSX  阅读(222)  评论(0编辑  收藏  举报