SPOJ1007 VLATTICE - Visible Lattice Points
VLATTICE - Visible Lattice Points
Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is
at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A
point X is visible from point Y iff no other lattice point lies on the
segment joining X and Y.
Input :
The first line contains the number of test cases T. The next T lines contain
an interger N
Output :
Output T lines, one corresponding to each test case.
Sample Input :
3
1
2
5
Sample Output :
7
19
175
Constraints :
T <= 50
1 <= N <= 1000000
Description(题意)
有 N*N*N网格. 一个角落在 (0,0,0),对顶角落是 (N,N,N). 问从(0,0,0)看有多少个格点是可见的?点 X从点Y可见,当且仅当,线段XY上没有其他的点。
Input:
第一行是测试数据个数T。接着有T行每行有一个整数 N.
Output :
输出T行,每行是对应的可见格点的个数。
Sample Input :
3
1
2
5
Sample Output :
7
19
175
Constraints :
T <= 50
1 <= N <= 1000000
Solution:
#include<cstdio> #include<iostream> #ifdef WIN32 #define LL "%I64d" #else #define LL "%lld" #endif using namespace std; typedef long long ll; const int M=1e6+5; int n,m,T;ll sum[M]; int tot,prime[M/3],mu[M];bool check[M]; void sieve(){ n=1e6;mu[1]=1; for(int i=2;i<=n;i++){ if(!check[i]) prime[++tot]=i,mu[i]=-1; for(int j=1;j<=tot&&i*prime[j]<=n;j++){ check[i*prime[j]]=1; if(!(i%prime[j])){mu[i*prime[j]]=0;break;} else mu[i*prime[j]]=-mu[i]; } } for(int i=1;i<=n;i++) sum[i]=sum[i-1]+mu[i]; } inline ll s2(int x){return 1LL*x*x;} inline ll s3(int x){return 1LL*x*x*x;} inline ll solve(int n){ ll ans=3; for(int i=1,pos;i<=n;i=pos+1){ pos=n/(n/i); ans+=s3(n/i)*(sum[pos]-sum[i-1]); ans+=3*s2(n/i)*(sum[pos]-sum[i-1]); } return ans; } int main(){ sieve(); for(scanf("%d",&T);T--;){ scanf("%d",&n); printf(LL"\n",solve(n)); } return 0; }