sjtu 1077 加分二叉树

树型DP入门题

题目链接:http://acm.sjtu.edu.cn/OnlineJudge/problem/1077

•设f(i,j)中序遍历为i,i+1,…,j的二叉树的最大加分,则有:

  f(i,j)=max{f[i,k-1]*f[k+1,j] +d[k]}

•显然 f(i,i)=d[i]
•答案为f(1,n)
•1<=i<=k=<=j<=n
•时间复杂度  O(n3)
•要构造这个树,只需记录每次的决策值,令b(i,j)=k,表示中序遍历为i,i+1,…,j的二叉树的取最优决策时的根结点为k

最后前序遍历这个树即可。

 

/*
树型DP
*/
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define MAX 35
#define INF 0x3f3f3f3f

long long dp[MAX][MAX];
int p[MAX][MAX];
int a[MAX];
queue<int>q;

long long dfs(int i ,int j)
{
  if(i>j) return dp[i][j]=1;
  if(dp[i][j]!=-1) return dp[i][j];
  dp[i][j]=-INF;
  for(int k=i; k<=j; k++)
  {
    long long t1=dfs(i,k-1);
    long long t2=dfs(k+1,j);
    if(t1*t2+a[k] > dp[i][j])
    {
      dp[i][j]=t1*t2+a[k];
      p[i][j]=k;
    }
  }
  return dp[i][j];
}

void travel(int i ,int j)
{
  if(i>j) return ;
  if(i==j)
  {
    q.push(i);
    return ;
  }
  int k=p[i][j];
  q.push(k);
  travel(i,k-1);
  travel(k+1,j);
}

int main()
{
  int n;
  while(scanf("%d",&n)!=EOF)
  {
    for(int i=1; i<=n; i++) scanf("%d",&a[i]);
    memset(p,-1,sizeof(p));
    memset(dp,-1,sizeof(dp));
    for(int i=1; i<=n; i++)
    {
      dp[i][i]=a[i];
      p[i][i]=i;
    }
    dfs(1,n);
    printf("%lld\n",dp[1][n]);
    while(!q.empty()) q.pop();
    travel(1,n);
    printf("%d",q.front());
    q.pop();
    while(!q.empty())
    {
      printf(" %d",q.front());
      q.pop();
    }
    printf("\n");
  }
  return 0;
}

 

posted @ 2013-03-18 19:05  Titanium  阅读(854)  评论(0编辑  收藏  举报