理解Kubernetes(2): 应用的各种访问方式
理解Kubernetes系列文章:
1. 通过 Pod 的 IP 地址访问应用
1.1 Pod 的IP地址
每个Pod 都会被分配一个IP地址,比如下面这儿pod的IP地址是 10.1.79.11.
root@kub-node-0:/home/ubuntu# kubectl get pod -o wide NAME READY STATUS RESTARTS AGE IP NODE my-nginx8-b77fdd7bc-4t2kb 1/1 Running 0 3d 10.1.79.11 172.23.100.6
该 Pod 在某个 node 上有两个容器:
root@kub-node-2:/home/ubuntu# docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES d199cb090c13 sammyliu8/nginx "nginx -g 'daemon of…" 3 days ago Up 3 days k8s_my-nginx8_my-nginx8-b77fdd7bc-4t2kb_default_cd1425fd-f48a-11e7-a605-fa163e9a22a6_0 0c647fb76c0b kubernetes/pause "/pause" 3 days ago Up 3 days k8s_POD_my-nginx8-b77fdd7bc-4t2kb_default_cd1425fd-f48a-11e7-a605-fa163e9a22a6_0
dockerd 会给 pause 容器分配一个ip,这个ip 就是 pod 的ip:
root@kub-node-2:/home/ubuntu# ip netns exec pause0b ip addr77: eth0@if78: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state UP group default link/ether 02:42:0a:01:4f:0b brd ff:ff:ff:ff:ff:ff link-netnsid 0 inet 10.1.79.11/24 brd 10.1.79.255 scope global eth0 valid_lft forever preferred_lft forever
而 nginx 容器是跟 pause 容器共享 network namespace 的:
root@kub-node-2:/home/ubuntu# ip netns exec nginx13 ip addr 77: eth0@if78: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state UP group default link/ether 02:42:0a:01:4f:0b brd ff:ff:ff:ff:ff:ff link-netnsid 0 inet 10.1.79.11/24 brd 10.1.79.255 scope global eth0 valid_lft forever preferred_lft forever
IP 所在的网段是在 dockerd 的启动参数中给的:
root 11183 1 1 2017 ? 03:04:26 /usr/bin/dockerd -g /data/docker --bip=10.1.79.1/24 --mtu=1400
1.2 Pod IP 地址的由来
(1)管理员配置 flannel 使用的 network,并将配置保存在 etcd 中
/opt/bin/etcdctl --endpoints="http://172.23.100.4:2379,http://172.23.100.5:2379,http://172.23.100.4:2379" mk /coreos.com/network/config \ '{"Network":"10.1.0.0/16", "Backend": {"Type": "vxlan"}}'
(2)在每个 minion 节点上,flannel 启动。它从 etcd 中获取 network 配置,并为本节点产生一个 subnet,也保存在 etcd 中。并且产生 /run/flannel/subnet.env 文件:
FLANNEL_NETWORK=10.1.0.0/16 #这是全局的 falnnel network FLANNEL_SUBNET=10.1.1.1/24 #这是本节点上 falnnel subnet FLANNEL_MTU=1400 #本节点上 flannel mtu FLANNEL_IPMASQ=true
(3)flannel deamon 还会创建 flannel.1 的 vxlan vtep 端点:
root@kub-node-1:/opt/bin# ifconfig flannel.1 flannel.1 Link encap:Ethernet HWaddr 0a:6e:a6:6f:95:04 inet addr:10.1.1.0 Bcast:0.0.0.0 Mask:255.255.255.255 root@kub-node-1:/opt/bin# ip link show dev flannel.1 3: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 0a:6e:a6:6f:95:04 brd ff:ff:ff:ff:ff:ff
其 mtu 正好是 1400. 该端点会负责接收和发送 vxlan 数据包。
(3)使用 subnet.env 中的变量,启动 dockerd 进程,它的 bip 对应 FLANNEL_SUBNET,mtu 对应 FLANNEL_MTU。
/usr/bin/dockerd -g /data/docker --bip=10.1.1.1/24 --mtu=1400
(4)dockerd deamon 会创建 docker0 网桥
root@kub-node-1:/opt/bin# ifconfig docker0 docker0 Link encap:Ethernet HWaddr 02:42:30:ef:ef:18 inet addr:10.1.1.1 Bcast:10.1.1.255 Mask:255.255.255.0
本节点上的容器都会使用一个 veth 设备挂接在该网桥上比如:
root@kub-node-1:/opt/bin# brctl show docker0 bridge name bridge id STP enabled interfaces docker0 8000.024230efef18 no veth295ded4 veth5459316
(5)对每一个被调度到本节点上的 POD,kubelet 都会创建一个 pause 容器,该容器会通过一个 veth 设备挂接到 docker0 上;同时,POD 中的其他容器会共享 pause 容器的 network namespace。
1.3 POD 间通信
首先看下本节点上的路由表:
root@kub-node-1:/opt/bin# route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 172.23.100.1 0.0.0.0 UG 0 0 0 ens3 10.1.0.0 0.0.0.0 255.255.0.0 U 0 0 0 flannel.1 #flannel 网络内跨节点的通信会交给 flannel.1 处理 10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 docker0 #flannel 网络内节点内的通信会走 docker0 169.254.169.254 172.23.100.1 255.255.255.255 UGH 0 0 0 ens3 172.23.100.0 0.0.0.0 255.255.255.0 U 0 0 0 ens3
如果是同一个 deployment 的位于同一个 minon 上的两个 POD 之间通信,那实际上是同一个 subnet 间通信,此时经过 docker0 网桥即可;
如果是同一个 deployment 的位于两个 minon 上的两个 POD 之间通信,另一个POD 的IP 在 10.1.79.0 子网上,那么首先到 flannel.1, flannel 查询 etcd 获取对方容器所在的节点的IP地址,然后封装为 vxlan 的 udp 包,发到 ens3,走物理机网络达到对方节点。此时,完整的路径是:
containerA --> docker0 --> flannel.1 --> NodeA --> (IP Address) --> NodeB --> flannel.1 --> docker0 --> containerB
根据subnet 从 etcd 中获取 node ip:
root@kub-node-0:/home/ubuntu/kub# /opt/bin/etcdctl --endpoints="http://172.23.100.4:2379,http://172.23.100.5:2379,http://172.23.100.4:2379" get /coreos.com/network/subnets/10.1.79.0-24 {"PublicIP":"172.23.100.6","BackendType":"vxlan","BackendData":{"VtepMAC":"6e:10:b3:53:1e:f4"}}
1.4 通过POD IP 访问应用
POD 的 IP 地址是 docker 分配的,在 falnnel 网络范围内,也就是 K8S 集群范围内,都可以使用 POD 的 IP 访问 POD 中的应用。比如:
root@kub-node-0:/home/ubuntu/kub# kubectl get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE my-nginx8-b77fdd7bc-4t2kb 1/1 Running 0 4d 10.1.79.11 172.23.100.6 root@kub-node-0:/home/ubuntu/kub# curl 10.1.79.11:80 <h1>Welcome to nginx!</h1> <p>If you see this page, the nginx web server is successfully installed and working. Further configuration is required.</p> <p>For online documentation and support please refer to <a href="http://nginx.org/">nginx.org</a>.<br/> Commercial support is available at <a href="http://nginx.com/">nginx.com</a>.</p> <p><em>Thank you for using nginx.</em></p> </body> </html>
而在集群之外,是无法访问POD的IP的。
2. 通过 Cluster Service 的IP地址访问应用
2.1 Service 的 Cluster IP
从上面内容可以看出,每个POD的IP 跟所在节点的配置有关,因此,随着POD在不同节点上的生生死死,其IP地址会发生变化。为了解决这个问题,K8S 提供了 Cluster 类型的 service。
创建一个 Cluster 类型的 service:
root@kub-node-0:/home/ubuntu/kub# kubectl expose deployment my-nginx8 --type ClusterIP --name nginx-cluster-svc service "nginx-cluster-svc" exposed
该 service 由 kube-apiserver 服务分配了虚拟的 IP 地址 192.1.47.211:
root@kub-node-0:/home/ubuntu/kub# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 192.1.0.1 <none> 443/TCP 13d nginx-cluster-svc ClusterIP 192.1.47.211 <none> 80/TCP 1m
而这些 IP 地址的区间则是其启动参数 service-cluster-ip-range 指定的。在当前测试环境中,其值是 --service-cluster-ip-range=192.1.0.0/16。
2.2 Service Cluster IP 地址的由来
只能在 minon 节点上,而且只能使用 IP:Port/协议 才能访问 service。其它地方或者其它方式都不可以。
root@kub-node-1:/home/ubuntu# iptables -S -t nat | grep KUBE-SERVICES -N KUBE-SERVICES -A PREROUTING -m comment --comment "kubernetes service portals" -j KUBE-SERVICES -A OUTPUT -m comment --comment "kubernetes service portals" -j KUBE-SERVICES -A KUBE-SERVICES -d 192.1.47.211/32 -p tcp -m comment --comment "default/nginx-cluster-svc: cluster IP" -m tcp --dport 80 -j KUBE-SVC-XQHY67DURS27F2QJ -A KUBE-SERVICES -d 192.1.0.1/32 -p tcp -m comment --comment "default/kubernetes:https cluster IP" -m tcp --dport 443 -j KUBE-SVC-NPX46M4PTMTKRN6Y -A KUBE-SERVICES -d 192.1.233.219/32 -p tcp -m comment --comment "kube-system/kubernetes-dashboard: cluster IP" -m tcp --dport 443 -j KUBE-SVC-XGLOHA7QRQ3V22RZ -A KUBE-SERVICES -m comment --comment "kubernetes service nodeports; NOTE: this must be the last rule in this chain" -m addrtype --dst-type LOCAL -j KUBE-NODEPORTS
root@kub-node-1:/home/ubuntu# iptables -S -t nat | grep KUBE-SVC-XQHY67DURS27F2QJ -N KUBE-SVC-XQHY67DURS27F2QJ -A KUBE-SERVICES -d 192.1.47.211/32 -p tcp -m comment --comment "default/nginx-cluster-svc: cluster IP" -m tcp --dport 80 -j KUBE-SVC-XQHY67DURS27F2QJ -A KUBE-SVC-XQHY67DURS27F2QJ -m comment --comment "default/nginx-cluster-svc:" -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-FO4LSVXACD7WOMVW -A KUBE-SVC-XQHY67DURS27F2QJ -m comment --comment "default/nginx-cluster-svc:" -j KUBE-SEP-DCSHEKS5WGS4LYVT
root@kub-node-1:/home/ubuntu# iptables -S -t nat | grep KUBE-SEP-FO4LSVXACD7WOMVW -N KUBE-SEP-FO4LSVXACD7WOMVW -A KUBE-SEP-FO4LSVXACD7WOMVW -s 10.1.1.4/32 -m comment --comment "default/nginx-cluster-svc:" -j KUBE-MARK-MASQ -A KUBE-SEP-FO4LSVXACD7WOMVW -p tcp -m comment --comment "default/nginx-cluster-svc:" -m tcp -j DNAT --to-destination 10.1.1.4:80
root@kub-node-1:/home/ubuntu# iptables -S -t nat | grep KUBE-SEP-DCSHEKS5WGS4LYVT
-N KUBE-SEP-DCSHEKS5WGS4LYVT
-A KUBE-SEP-DCSHEKS5WGS4LYVT -s 10.1.79.11/32 -m comment --comment "default/nginx-cluster-svc:" -j KUBE-MARK-MASQ
-A KUBE-SEP-DCSHEKS5WGS4LYVT -p tcp -m comment --comment "default/nginx-cluster-svc:" -m tcp -j DNAT --to-destination 10.1.79.11:80
从以上 iptables 规则可以看出,在该节点上通过 192.1.47.211:80 访问 cluster service,最终结果是以50% 和 50% 的概率发到了 10.1.1.4:80 和 10.1.79.11:80 上,而这两个的地址正是该service 的 两个 POD 的 IP 地址。
所以主要流程是:
- kube-proxy 根据 cluster service 的CRUD 来在每个节点上生成对应的 iptables 规则
- 当通过 cluster ip 访问时,这些 iptables 规则会通过 NAT 方式把流量导向 service的 POD
3. 通过 NodePort service 的 IP 访问应用
Cluster service 的 IP 地址是虚拟的,因此,只能从minon 节点上使用该IP 地址访问应用。为了从集群外访问应用,K8S 提供了使用 minon 节点的IP 地址访问应用的方式。
3.1 NodePort Service
创建一个 NodePort 类型的 service,系统会自动创建一个 cluster-ip,同时还多了一个 port。下图中是 31295. 该端口号的范围是 kube-apiserver 的启动参数 --service-node-port-range指定的,在当前测试环境中其值是 30000-32767。
root@kub-node-0:/home/ubuntu/kub# kubectl expose deployment my-nginx8 --type NodePort --name nginx-nodeport-svc service "nginx-nodeport-svc" exposed root@kub-node-0:/home/ubuntu/kub# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 192.1.0.1 <none> 443/TCP 13d nginx-nodeport-svc NodePort 192.1.88.35 <none> 80:31295/TCP 5s
通过每个 minon 节点的IP 和 31295 端口可以访问该service。
3.2 Service NodePort 的由来
root@kub-node-1:/var/log/kubernetes# iptables -S -t nat | grep KUBE-NODEPORTS -N KUBE-NODEPORTS -A KUBE-NODEPORTS -p tcp -m comment --comment "default/nginx-nodeport-svc:" -m tcp --dport 31295 -j KUBE-MARK-MASQ -A KUBE-NODEPORTS -p tcp -m comment --comment "default/nginx-nodeport-svc:" -m tcp --dport 31295 -j KUBE-SVC-YN4D7LGVMIQA3S2Y root@kub-node-1:/var/log/kubernetes# iptables -S -t nat | grep KUBE-SVC-YN4D7LGVMIQA3S2Y -N KUBE-SVC-YN4D7LGVMIQA3S2Y -A KUBE-SVC-YN4D7LGVMIQA3S2Y -m comment --comment "default/nginx-nodeport-svc:" -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-H7QSASJ4XBTCRED7
root@kub-node-1:/var/log/kubernetes# iptables -S -t nat | grep KUBE-SEP-H7QSASJ4XBTCRED7 -N KUBE-SEP-H7QSASJ4XBTCRED7 -A KUBE-SEP-H7QSASJ4XBTCRED7 -s 10.1.1.4/32 -m comment --comment "default/nginx-nodeport-svc:" -j KUBE-MARK-MASQ -A KUBE-SEP-H7QSASJ4XBTCRED7 -p tcp -m comment --comment "default/nginx-nodeport-svc:" -m tcp -j DNAT --to-destination 10.1.1.4:80 -A KUBE-SVC-YN4D7LGVMIQA3S2Y -m comment --comment "default/nginx-nodeport-svc:" -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-H7QSASJ4XBTCRED7 root@kub-node-1:/var/log/kubernetes# iptables -S -t nat | grep KUBE-SEP-YLSXRQMQKCP2ZZ6B -N KUBE-SEP-YLSXRQMQKCP2ZZ6B -A KUBE-SEP-YLSXRQMQKCP2ZZ6B -s 10.1.79.11/32 -m comment --comment "default/nginx-nodeport-svc:" -j KUBE-MARK-MASQ -A KUBE-SEP-YLSXRQMQKCP2ZZ6B -p tcp -m comment --comment "default/nginx-nodeport-svc:" -m tcp -j DNAT --to-destination 10.1.79.11:80 -A KUBE-SVC-YN4D7LGVMIQA3S2Y -m comment --comment "default/nginx-nodeport-svc:" -j KUBE-SEP-YLSXRQMQKCP2ZZ6B
可见,同样地,通过 iptables 规则,通过 nodeport 访问service,最终转到了对该 servide 的所有 pod 轮流地访问。
即使某个 node 上没有service 的 pod,这些规则也会被创建,也就是说,NodePort 模式会在每个节点上开起一个端口,然后转发到内部 Pod IP 。这样可以保证使用任何一个 node 的ip,结合 nodeport,都可以访问到 service。
4. 采用云 load balancer
NodePort 方式虽然可以被数据中心内部访问,但是它无法被互联网访问。为了解决这个问题,某些公有云平台向 Kubernetes 集群提供了负载均衡,产生了一个可以在公网上访问到的虚拟IP。示意图如下:
等将来有机会再试试。