理解Docker(4):Docker 容器使用 cgroups 限制资源使用
本系列文章将介绍Docker的有关知识:
(2)Docker 镜像
(3)Docker 容器的隔离性 - 使用 Linux namespace 隔离容器的运行环境
(4)Docker 容器的隔离性 - 使用 cgroups 限制容器使用的资源
(5)Docker 网络
上一篇文章将到 Docker 容器使用 linux namespace 来隔离其运行环境,使得容器中的进程看起来就像爱一个独立环境中运行一样。但是,光有运行环境隔离还不够,因为这些进程还是可以不受限制地使用系统资源,比如网络、磁盘、CPU以及内存 等。关于其目的,一方面,是为了防止它占用了太多的资源而影响到其它进程;另一方面,在系统资源耗尽的时候,linux 内核会触发 OOM,这会让一些被杀掉的进程成了无辜的替死鬼。因此,为了让容器中的进程更加可控,Docker 使用 Linux cgroups 来限制容器中的进程允许使用的系统资源。
1. 基础知识:Linux control groups
1.1 概念
Linux Cgroup 可让您为系统中所运行任务(进程)的用户定义组群分配资源 — 比如 CPU 时间、系统内存、网络带宽或者这些资源的组合。您可以监控您配置的 cgroup,拒绝 cgroup 访问某些资源,甚至在运行的系统中动态配置您的 cgroup。所以,可以将 controll groups 理解为 controller (system resource) (for) (process)groups,也就是是说它以一组进程为目标进行系统资源分配和控制。
它主要提供了如下功能:
- Resource limitation: 限制资源使用,比如内存使用上限以及文件系统的缓存限制。
- Prioritization: 优先级控制,比如:CPU利用和磁盘IO吞吐。
- Accounting: 一些审计或一些统计,主要目的是为了计费。
- Control: 挂起进程,恢复执行进程。
使用 cgroup,系统管理员可更具体地控制对系统资源的分配、优先顺序、拒绝、管理和监控。可更好地根据任务和用户分配硬件资源,提高总体效率。
在实践中,系统管理员一般会利用CGroup做下面这些事(有点像为某个虚拟机分配资源似的):
- 隔离一个进程集合(比如:nginx的所有进程),并限制他们所消费的资源,比如绑定CPU的核。
- 为这组进程分配其足够使用的内存
- 为这组进程分配相应的网络带宽和磁盘存储限制
- 限制访问某些设备(通过设置设备的白名单)
查看 linux 内核中是否启用了 cgroup:
[root@node1 1573]# uname -r 3.10.0-514.2.2.el7.x86_64 [root@node1 1573]# cat /boot/config-3.10.0-514.2.2.el7.x86_64 | grep CGROUP CONFIG_CGROUPS=y # CONFIG_CGROUP_DEBUG is not set CONFIG_CGROUP_FREEZER=y CONFIG_CGROUP_PIDS=y CONFIG_CGROUP_DEVICE=y CONFIG_CGROUP_CPUACCT=y CONFIG_CGROUP_HUGETLB=y CONFIG_CGROUP_PERF=y CONFIG_CGROUP_SCHED=y CONFIG_BLK_CGROUP=y # CONFIG_DEBUG_BLK_CGROUP is not set CONFIG_NETFILTER_XT_MATCH_CGROUP=m CONFIG_NET_CLS_CGROUP=y CONFIG_NETPRIO_CGROUP=y
对应的 cgroup 的配置值如果是 'y',则表示已经被启用了。
Linux 系统中,一切皆文件。Linux 也将 cgroups 实现成了文件系统,方便用户使用。在我的 Ubuntu 14.04 测试环境中:
root@devstack:/home/sammy# mount -t cgroup cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,relatime,cpuset) cgroup on /sys/fs/cgroup/cpu type cgroup (rw,relatime,cpu) systemd on /sys/fs/cgroup/systemd type cgroup (rw,noexec,nosuid,nodev,none,name=systemd)
root@devstack:/home/sammy# lssubsys -m cpuset /sys/fs/cgroup/cpuset cpu /sys/fs/cgroup/cpu cpuacct /sys/fs/cgroup/cpuacct memory /sys/fs/cgroup/memory devices /sys/fs/cgroup/devices freezer /sys/fs/cgroup/freezer blkio /sys/fs/cgroup/blkio perf_event /sys/fs/cgroup/perf_event hugetlb /sys/fs/cgroup/hugetlb
root@devstack:/home/sammy# ls /sys/fs/cgroup/ -l total 0 drwxr-xr-x 3 root root 0 Sep 18 21:46 blkio drwxr-xr-x 3 root root 0 Sep 18 21:46 cpu drwxr-xr-x 3 root root 0 Sep 18 21:46 cpuacct drwxr-xr-x 3 root root 0 Sep 18 21:46 cpuset drwxr-xr-x 3 root root 0 Sep 18 21:46 devices drwxr-xr-x 3 root root 0 Sep 18 21:46 freezer drwxr-xr-x 3 root root 0 Sep 18 21:46 hugetlb drwxr-xr-x 3 root root 0 Sep 18 21:46 memory drwxr-xr-x 3 root root 0 Sep 18 21:46 perf_event drwxr-xr-x 3 root root 0 Sep 18 21:46 systemd
我们看到 /sys/fs/cgroup 目录中有若干个子目录,我们可以认为这些都是受 cgroups 控制的资源以及这些资源的信息。
- blkio — 这个子系统为块设备设定输入/输出限制,比如物理设备(磁盘,固态硬盘,USB 等等)。
- cpu — 这个子系统使用调度程序提供对 CPU 的 cgroup 任务访问。
- cpuacct — 这个子系统自动生成 cgroup 中任务所使用的 CPU 报告。
- cpuset — 这个子系统为 cgroup 中的任务分配独立 CPU(在多核系统)和内存节点。
- devices — 这个子系统可允许或者拒绝 cgroup 中的任务访问设备。
- freezer — 这个子系统挂起或者恢复 cgroup 中的任务。
- memory — 这个子系统设定 cgroup 中任务使用的内存限制,并自动生成内存资源使用报告。
- net_cls — 这个子系统使用等级识别符(classid)标记网络数据包,可允许 Linux 流量控制程序(tc)识别从具体 cgroup 中生成的数据包。
- net_prio — 这个子系统用来设计网络流量的优先级
- hugetlb — 这个子系统主要针对于HugeTLB系统进行限制,这是一个大页文件系统。
默认的话,在 Ubuntu 系统中,你可能看不到 net_cls 和 net_prio 目录,它们需要你手工做 mount:
root@devstack:/sys/fs/cgroup# modprobe cls_cgroup root@devstack:/sys/fs/cgroup# mkdir net_cls root@devstack:/sys/fs/cgroup# mount -t cgroup -o net_cls none net_cls root@devstack:/sys/fs/cgroup# modprobe netprio_cgroup root@devstack:/sys/fs/cgroup# mkdir net_prio root@devstack:/sys/fs/cgroup# mount -t cgroup -o net_prio none net_prio root@devstack:/sys/fs/cgroup# ls net_prio/cgroup.clone_children cgroup.procs net_prio.ifpriomap notify_on_release tasks cgroup.event_control cgroup.sane_behavior net_prio.prioidx release_agent root@devstack:/sys/fs/cgroup# ls net_cls/ cgroup.clone_children cgroup.event_control cgroup.procs cgroup.sane_behavior net_cls.classid notify_on_release release_agent tasks
1.2 实验
1.2.1 通过 cgroups 限制进程的 CPU
写一段最简单的 C 程序:
int main(void) { int i = 0; for(;;) i++; return 0; }
编译,运行,发现它占用的 CPU 几乎到了 100%:
top - 22:43:02 up 1:14, 3 users, load average: 0.24, 0.06, 0.06 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2304 root 20 0 4188 356 276 R 99.6 0.0 0:11.77 hello
接下来我们做如下操作:
root@devstack:/home/sammy/c# mkdir /sys/fs/cgroup/cpu/hello root@devstack:/home/sammy/c# cd /sys/fs/cgroup/cpu/hello root@devstack:/sys/fs/cgroup/cpu/hello# ls cgroup.clone_children cgroup.procs cpu.cfs_quota_us cpu.stat tasks cgroup.event_control cpu.cfs_period_us cpu.shares notify_on_release root@devstack:/sys/fs/cgroup/cpu/hello# cat cpu.cfs_quota_us -1 root@devstack:/sys/fs/cgroup/cpu/hello# echo 20000 > cpu.cfs_quota_us root@devstack:/sys/fs/cgroup/cpu/hello# cat cpu.cfs_quota_us 20000 root@devstack:/sys/fs/cgroup/cpu/hello# echo 2428 > tasks
然后再来看看这个进程的 CPU 占用情况:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2428 root 20 0 4188 356 276 R 19.9 0.0 0:46.03 hello
它占用的 CPU 几乎就是 20%,也就是我们预设的阈值。这说明我们通过上面的步骤,成功地将这个进程运行所占用的 CPU 资源限制在某个阈值之内了。
如果此时再启动另一个 hello 进程并将其 id 加入 tasks 文件,则两个进程会共享设定的 CPU 限制:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2428 root 20 0 4188 356 276 R 10.0 0.0 285:39.54 hello 12526 root 20 0 4188 356 276 R 10.0 0.0 0:25.09 hello
1.2.2 通过 cgroups 限制进程的 Memory
同样地,我们针对它占用的内存做如下操作:
root@devstack:/sys/fs/cgroup/memory# mkdir hello root@devstack:/sys/fs/cgroup/memory# cd hello/ root@devstack:/sys/fs/cgroup/memory/hello# cat memory.limit_in_bytes 18446744073709551615 root@devstack:/sys/fs/cgroup/memory/hello# echo 64k > memory.limit_in_bytes root@devstack:/sys/fs/cgroup/memory/hello# echo 2428 > tasks root@devstack:/sys/fs/cgroup/memory/hello#
上面的步骤会把进程 2428 说占用的内存阈值设置为 64K。超过的话,它会被杀掉。
1.2.3 限制进程的 I/O
运行命令:
sudo dd if=/dev/sda1 of=/dev/null
通过 iotop 命令看 IO (此时磁盘在快速转动),此时其写速度为 242M/s:
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND 2555 be/4 root 242.60 M/s 0.00 B/s 0.00 % 61.66 % dd if=/dev/sda1 of=/dev/null
接着做下面的操作:
root@devstack:/home/sammy# mkdir /sys/fs/cgroup/blkio/io root@devstack:/home/sammy# cd /sys/fs/cgroup/blkio/io root@devstack:/sys/fs/cgroup/blkio/io# ls -l /dev/sda1 brw-rw---- 1 root disk 8, 1 Sep 18 21:46 /dev/sda1 root@devstack:/sys/fs/cgroup/blkio/io# echo '8:0 1048576' > /sys/fs/cgroup/blkio/io/blkio.throttle.read_bps_device root@devstack:/sys/fs/cgroup/blkio/io# echo 2725 > /sys/fs/cgroup/blkio/io/tasks
结果,这个进程的IO 速度就被限制在 1Mb/s 之内了:
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND 2555 be/4 root 990.44 K/s 0.00 B/s 0.00 % 96.29 % dd if=/dev/sda1 of=/dev/null
1.3 术语
cgroups 的术语包括:
- 任务(Tasks):就是系统的一个进程。
- 控制组(Control Group):一组按照某种标准划分的进程,比如官方文档中的Professor和Student,或是WWW和System之类的,其表示了某进程组。Cgroups中的资源控制都是以控制组为单位实现。一个进程可以加入到某个控制组。而资源的限制是定义在这个组上,就像上面示例中我用的 hello 一样。简单点说,cgroup的呈现就是一个目录带一系列的可配置文件。
- 层级(Hierarchy):控制组可以组织成hierarchical的形式,既一颗控制组的树(目录结构)。控制组树上的子节点继承父结点的属性。简单点说,hierarchy就是在一个或多个子系统上的cgroups目录树。
- 子系统(Subsystem):一个子系统就是一个资源控制器,比如CPU子系统就是控制CPU时间分配的一个控制器。子系统必须附加到一个层级上才能起作用,一个子系统附加到某个层级以后,这个层级上的所有控制族群都受到这个子系统的控制。Cgroup的子系统可以有很多,也在不断增加中。
2. Docker 对 cgroups 的使用
2.1 默认情况
默认情况下,Docker 启动一个容器后,会在 /sys/fs/cgroup 目录下的各个资源目录下生成以容器 ID 为名字的目录(group),比如:
/sys/fs/cgroup/cpu/docker/03dd196f415276375f754d51ce29b418b170bd92d88c5e420d6901c32f93dc14
此时 cpu.cfs_quota_us 的内容为 -1,表示默认情况下并没有限制容器的 CPU 使用。在容器被 stopped 后,该目录被删除。
运行命令 docker run -d --name web41 --cpu-quota 25000 --cpu-period 100 --cpu-shares 30 training/webapp python app.py 启动一个新的容器,结果:
root@devstack:/sys/fs/cgroup/cpu/docker/06bd180cd340f8288c18e8f0e01ade66d066058dd053ef46161eb682ab69ec24# cat cpu.cfs_quota_us 25000 root@devstack:/sys/fs/cgroup/cpu/docker/06bd180cd340f8288c18e8f0e01ade66d066058dd053ef46161eb682ab69ec24# cat tasks 3704 root@devstack:/sys/fs/cgroup/cpu/docker/06bd180cd340f8288c18e8f0e01ade66d066058dd053ef46161eb682ab69ec24# cat cpu.cfs_period_us 2000
Docker 会将容器中的进程的 ID 加入到各个资源对应的 tasks 文件中。表示 Docker 也是以上面的机制来使用 cgroups 对容器的 CPU 使用进行限制。
相似地,可以通过 docker run 中 mem 相关的参数对容器的内存使用进行限制:
--cpuset-mems string MEMs in which to allow execution (0-3, 0,1) --kernel-memory string Kernel memory limit -m, --memory string Memory limit --memory-reservation string Memory soft limit --memory-swap string Swap limit equal to memory plus swap: '-1' to enable unlimited swap --memory-swappiness int Tune container memory swappiness (0 to 100) (default -1)
比如 docker run -d --name web42 --blkio-weight 100 --memory 10M --cpu-quota 25000 --cpu-period 2000 --cpu-shares 30 training/webapp python app.py:
root@devstack:/sys/fs/cgroup/memory/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410# cat memory.limit_in_bytes 10485760
root@devstack:/sys/fs/cgroup/blkio/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410# cat blkio.weight
100
目前 docker 已经几乎支持了所有的 cgroups 资源,可以限制容器对包括 network,device,cpu 和 memory 在内的资源的使用,比如:
root@devstack:/sys/fs/cgroup# find -iname ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./net_prio/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./net_cls/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./systemd/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./hugetlb/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./perf_event/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./blkio/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./freezer/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./devices/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./memory/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./cpuacct/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./cpu/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./cpuset/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410
2.2 net_cls
net_cls 和 tc 一起使用可用于限制进程发出的网络包所使用的网络带宽。当使用 cgroups network controll net_cls 后,指定进程发出的所有网络包都会被加一个 tag,然后就可以使用其他工具比如 iptables 或者 traffic controller (TC)来根据网络包上的 tag 进行流量控制。关于 TC 的文档,网上很多,这里不再赘述,只是用一个简单的例子来加以说明。
关于 classid,它的格式是 0xAAAABBBB,其中,AAAA 是十六进制的主ID(major number),BBBB 是十六进制的次ID(minor number)。因此,0X10001 表示 10:1,而 0x00010001 表示 1:!。
(1)首先在host 的网卡 eth0 上做如下设置:
tc qdisc del dev eth0 root #删除已有的规则
tc qdisc add dev eth0 root handle 10: htb default 12
tc class add dev eth0 parent 10: classid 10:1 htb rate 1500kbit ceil 1500kbit burst 10k #限速
tc filter add dev eth0 protocol ip parent 10:0 prio 1 u32 match ip protocol 1 0xff flowid 10:1 #只处理 ping 参数的网络包
其结果是:
- 在网卡 eth0 上创建了一个 HTB root 队列,hangle 10: 表示队列句柄也就是major number 为 10
- 创建一个分类 10:1,限制它的出发网络带宽为 80 kbit (千比特每秒)
- 创建一个分类器,将 eth0 上 IP IMCP 协议 的 major ID 为 10 的 prio 为 1 的网络流量都分类到 10:1 类别
(2)启动容器
容器启动后,其 init 进程在host 上的 PID 就被加入到 tasks 文件中了:
root@devstack:/sys/fs/cgroup/net_cls/docker/ff8d9715b7e11a5a69446ff1e3fde3770078e32a7d8f7c1cb35d51c75768fe33# ps -ef | grep 10047 231072 10047 10013 1 07:08 ? 00:00:00 python app.py
设置 net_cls classid:
echo 0x100001 > net_cls.classid
再在容器启动一个 ping 进程,其 ID 也被加入到 tasks 文件中了。
(3)查看tc 情况: tc -s -d class show dev eth0
Every 2.0s: tc -s class ls dev eth0 Wed Sep 21 04:07:56 2016
class htb 10:1 root prio 0 rate 1500Kbit ceil 1500Kbit burst 10Kb cburst 1599b
Sent 17836 bytes 182 pkt (dropped 0, overlimits 0 requeues 0)
rate 0bit 0pps backlog 0b 0p requeues 0
lended: 182 borrowed: 0 giants: 0
tokens: 845161 ctokens: 125161
我们可以看到 tc 已经在处理 ping 进程产生的数据包了。再来看一下 net_cls 和 ts 合作的限速效果:
10488 bytes from 192.168.1.1: icmp_seq=35 ttl=63 time=12.7 ms 10488 bytes from 192.168.1.1: icmp_seq=36 ttl=63 time=15.2 ms 10488 bytes from 192.168.1.1: icmp_seq=37 ttl=63 time=4805 ms 10488 bytes from 192.168.1.1: icmp_seq=38 ttl=63 time=9543 ms
其中:
- 后两条说使用的 tc class 规则是 tc class add dev eth0 parent 10: classid 10:1 htb rate 1500kbit ceil 15kbit burst 10k
- 前两条所使用的 tc class 规则是 tc class add dev eth0 parent 10: classid 10:1 htb rate 1500kbit ceil 10Mbit burst 10k
3. Docker run 命令中 cgroups 相关命令
block IO: --blkio-weight value Block IO (relative weight), between 10 and 1000 --blkio-weight-device value Block IO weight (relative device weight) (default []) --cgroup-parent string Optional parent cgroup for the container CPU: --cpu-percent int CPU percent (Windows only) --cpu-period int Limit CPU CFS (Completely Fair Scheduler) period --cpu-quota int Limit CPU CFS (Completely Fair Scheduler) quota -c, --cpu-shares int CPU shares (relative weight) --cpuset-cpus string CPUs in which to allow execution (0-3, 0,1) --cpuset-mems string MEMs in which to allow execution (0-3, 0,1) Device: --device value Add a host device to the container (default []) --device-read-bps value Limit read rate (bytes per second) from a device (default []) --device-read-iops value Limit read rate (IO per second) from a device (default []) --device-write-bps value Limit write rate (bytes per second) to a device (default []) --device-write-iops value Limit write rate (IO per second) to a device (default []) Memory: --kernel-memory string Kernel memory limit -m, --memory string Memory limit --memory-reservation string Memory soft limit --memory-swap string Swap limit equal to memory plus swap: '-1' to enable unlimited swap --memory-swappiness int Tune container memory swappiness (0 to 100) (default -1)
一些说明:
1. cgroup 只能限制 CPU 的使用,而不能保证CPU的使用。也就是说, 使用 cpuset-cpus,可以让容器在指定的CPU或者核上运行,但是不能确保它独占这些CPU;cpu-shares 是个相对值,只有在CPU不够用的时候才其作用。也就是说,当CPU够用的时候,每个容器会分到足够的CPU;不够用的时候,会按照指定的比重在多个容器之间分配CPU。
2. 对内存来说,cgroups 可以限制容器最多使用的内存。使用 -m 参数可以设置最多可以使用的内存。
参考链接: