770. Basic Calculator IV
Given an
expression
such asexpression = "e + 8 - a + 5"
and an evaluation map such as{"e": 1}
(given in terms ofevalvars = ["e"]
andevalints = [1]
), return a list of tokens representing the simplified expression, such as["-1*a","14"]
- An expression alternates chunks and symbols, with a space separating each chunk and symbol.
- A chunk is either an expression in parentheses, a variable, or a non-negative integer.
- A variable is a string of lowercase letters (not including digits.) Note that variables can be multiple letters, and note that variables never have a leading coefficient or unary operator like
"2x"
or"-x"
.Expressions are evaluated in the usual order: brackets first, then multiplication, then addition and subtraction. For example,
expression = "1 + 2 * 3"
has an answer of["7"]
.The format of the output is as follows:
- For each term of free variables with non-zero coefficient, we write the free variables within a term in sorted order lexicographically. For example, we would never write a term like
"b*a*c"
, only"a*b*c"
.- Terms have degree equal to the number of free variables being multiplied, counting multiplicity. (For example,
"a*a*b*c"
has degree 4.) We write the largest degree terms of our answer first, breaking ties by lexicographic order ignoring the leading coefficient of the term.- The leading coefficient of the term is placed directly to the left with an asterisk separating it from the variables (if they exist.) A leading coefficient of 1 is still printed.
- An example of a well formatted answer is
["-2*a*a*a", "3*a*a*b", "3*b*b", "4*a", "5*c", "-6"]
- Terms (including constant terms) with coefficient 0 are not included. For example, an expression of "0" has an output of [].
Examples:
Input: expression = "e + 8 - a + 5", evalvars = ["e"], evalints = [1] Output: ["-1*a","14"] Input: expression = "e - 8 + temperature - pressure", evalvars = ["e", "temperature"], evalints = [1, 12] Output: ["-1*pressure","5"] Input: expression = "(e + 8) * (e - 8)", evalvars = [], evalints = [] Output: ["1*e*e","-64"] Input: expression = "7 - 7", evalvars = [], evalints = [] Output: [] Input: expression = "a * b * c + b * a * c * 4", evalvars = [], evalints = [] Output: ["5*a*b*c"] Input: expression = "((a - b) * (b - c) + (c - a)) * ((a - b) + (b - c) * (c - a))", evalvars = [], evalints = [] Output: ["-1*a*a*b*b","2*a*a*b*c","-1*a*a*c*c","1*a*b*b*b","-1*a*b*b*c","-1*a*b*c*c","1*a*c*c*c","-1*b*b*b*c","2*b*b*c*c","-1*b*c*c*c","2*a*a*b","-2*a*a*c","-2*a*b*b","2*a*c*c","1*b*b*b","-1*b*b*c","1*b*c*c","-1*c*c*c","-1*a*a","1*a*b","1*a*c","-1*b*c"]
Note:
expression
will have length in range[1, 250]
.evalvars, evalints
will have equal lengths in range[0, 100]
.
Approach #1: Simulate. [Java]
class Solution { Map<String, Integer> map = new HashMap<>(); class Term { int para = 1; List<String> var = new ArrayList<>(); @Override public String toString() { if (para == 0) return ""; String ans = ""; for (String s : var) ans += "*" + s; return para + ans; } boolean equals(Term that) { if (this.var.size() != that.var.size()) return false; for (int i = 0; i < this.var.size(); ++i) if (!this.var.get(i).equals(that.var.get(i))) return false; return true; } int compareTo(Term that) { if (this.var.size() > that.var.size()) return -1; if (this.var.size() < that.var.size()) return 1; for (int i = 0; i < this.var.size(); ++i) { int x = this.var.get(i).compareTo(that.var.get(i)); if (x != 0) return x; } return 0; } Term times(Term that) { Term pro = new Term(this.para * that.para); for (String s : this.var) pro.var.add(new String(s)); for (String s : that.var) pro.var.add(new String(s)); Collections.sort(pro.var); return pro; } Term (int x) { para = x; } Term (String s) { if (map.containsKey(s)) para = map.get(s); else var.add(s); } Term (Term that) { this.para = that.para; this.var = new ArrayList<>(that.var); } } class Expression { List<Term> list = new ArrayList<>(); char oper = '+'; Expression(int x) { list.add(new Term(x)); } Expression(String s) { list.add(new Term(s)); } Expression(List<Term> l) { list = l; } Expression times(Expression that) { List<Term> c = new ArrayList<>(); for (Term t1 : this.list) for (Term t2 : that.list) c.add(t1.times(t2)); c = combine(c); return new Expression(c); } Expression plus(Expression that, int sgn) { List<Term> c = new ArrayList<>(); for (Term t : this.list) c.add(new Term(t)); for (Term t : that.list) { Term t2 = new Term(t); t2.para = t2.para * sgn; c.add(t2); } c = combine(c); return new Expression(c); } Expression cal(Expression that) { if (oper == '+') return plus(that, 1); if (oper == '-') return plus(that, -1); return times(that); } List<String> toList() { List<String> ans = new ArrayList<>(); for (Term t : list) { String s = t.toString(); if (s.length() > 0) ans.add(s); } return ans; } List<Term> combine(List<Term> a) { Collections.sort(a, (t1, t2)->(t1.compareTo(t2))); List<Term> c = new ArrayList<>(); for (Term t : a) { if (c.size() != 0 && t.equals(c.get(c.size() - 1))) c.get(c.size() - 1).para += t.para; else c.add(new Term(t)); } return c; } } public List<String> basicCalculatorIV(String expression, String[] evalvars, int[] evalints) { for (int i = 0; i < evalvars.length; ++i) map.put(evalvars[i], evalints[i]); int i = 0, l = expression.length(); Stack<Expression> stack = new Stack<>(); Stack<Integer> priStack = new Stack<>(); Expression zero = new Expression(0); stack.push(zero); priStack.push(0); int pri = 0; while (i < l) { char ch = expression.charAt(i); if (Character.isDigit(ch)) { int num = 0; while (i < l && Character.isDigit(expression.charAt(i))) { num = num * 10 + (expression.charAt(i) - 48); i++; } stack.add(new Expression(num)); continue; } if (Character.isLetter(ch)) { String s = ""; while (i < l && Character.isLetter(expression.charAt(i))) { s += expression.charAt(i); i++; } stack.add(new Expression(s)); continue; } if (ch == '(') pri += 2; if (ch == ')') pri -= 2; if (ch == '+' || ch == '-' || ch == '*') { int nowPri = pri; if (ch == '*') nowPri++; while (!priStack.isEmpty() && nowPri < priStack.peek()) { Expression now = stack.pop(), last = stack.pop(); priStack.pop(); stack.push(last.cal(now)); } stack.peek().oper = ch; priStack.push(nowPri); } ++i; } while (stack.size() > 1) { Expression now = stack.pop(), last = stack.pop(); stack.push(last.cal(now)); } return stack.peek().toList(); } }
Analysis:
Using stack to implement the arithmetic operation.
We can give each operator a priority number, + and - is 0, while * is 1. When an operator is inside "()", its priority increases by 2 for every "()".
For example:
4*(a-(b+(x*y))+d*e)
the operator priorities are:
* - + * + *
1 2 3 7 2 3
always do the operation with highest priority first.
class Trem if for each single term in our final answer.
class Expression is a list of class Terms.
We can do +-* for two Expressions.
Reference:
https://leetcode.com/problems/basic-calculator-iv/discuss/113551/Java-solution-using-stack