【BSGS】BZOJ3239 Discrete Logging
3239: Discrete Logging
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 729 Solved: 485
[Submit][Status][Discuss]
Description
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space,
Output
for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
Sample Input
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
题解
BSGS模板题
简单说下BSGS(baby step giant step)
用于解决离散对数问题即求解ax≡b(mod p)中的x
先处理出sqrt(p)范围内的b*ax的值,丢进map里
然后依次求出k*ak*sqrt(p)(k=1……sqrt(p))看答案是否有出现过
本质上就是分块的思想
代码
//by 减维 #include<set> #include<map> #include<queue> #include<ctime> #include<cmath> #include<bitset> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define ll long long #define il inline #define rg register #define db double #define mpr make_pair #define maxn #define inf (1<<30) #define eps 1e-8 #define pi 3.1415926535897932384626L using namespace std; inline int read() { int ret=0;bool fla=0;char ch=getchar(); while((ch<'0'||ch>'9')&&ch!='-')ch=getchar(); if(ch=='-'){fla=1;ch=getchar();} while(ch>='0'&&ch<='9'){ret=ret*10+ch-'0';ch=getchar();} return fla?-ret:ret; } ll x,y,p; ll ksm(ll x,ll y,ll p) { ll ret=1;x%=p; for(;y;y>>=1,x=x*x%p) if(y&1) ret=ret*x%p; return ret; } ll bsgs(ll x,ll y,ll p) { map<ll,ll> mp; x%=p;y%=p; if(!x&&!y) return 1; if(y==1) return 0; if(!x) return -1; ll m=sqrt(p+0.5); ll o=y; for(int i=0;i<=m;++i,o=o*x%p) if(!mp.count(o)) mp[o]=i; ll tmp=ksm(x,m,p);o=tmp; for(int i=1;i<=m;++i,o=o*tmp%p) if(mp.count(o)) return ((i*m-mp[o])%p+p)%p; return -1; } int main() { while(scanf("%lld%lld%lld",&p,&x,&y)!=EOF) { ll ans=bsgs(x,y,p); if(ans==-1) printf("no solution\n"); else printf("%lld\n",ans); } return 0; }