fzu 2035 Axial symmetry(枚举+几何)
题目大意:给出n个点,表示n边形的n个顶点,判断该n边形是否为轴对称图形。(给出点按照图形的顺时针或逆时针给出。
解题思路:将相邻两个点的中点有序的加入点集,即保证点是按照图形的顺时针或逆时针出现的,然后枚举i和i + n两点的直线作为对称轴。判断其他所有点是否对称即可。
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> const int N = 1005; const double eps = 1e-9; struct point { double x, y; void get() { scanf("%lf%lf", &x, &y); } void set(double a, double b) { x = a, y = b; } bool operator == (const point& c) { return fabs(x - c.x) < eps && fabs(y - c.y) < eps; } }p[N]; int n, vis[N]; void init() { scanf("%d", &n); p[0].get(); int t; for (int i = 1; i < n; i++) { t = i * 2; p[t].get(); p[t - 1].set((p[t - 2].x + p[t].x) / 2, (p[t - 2].y + p[t].y) / 2); } t = (n - 1) * 2; p[t + 1].set((p[t].x + p[0].x) / 2, (p[t].y + p[0].y) / 2); } void findLine(double& A, double& B, double& C, const point& u, const point& v) { A = v.y - u.y; B = u.x - v.x; C = u.y * (v.x - u.x) + (u.y - v.y) * u.x; } point findPoint(double A, double B, double C, point k) { point c; c.x = ( (B * B - A * A) * k.x - 2 * A * B * k.y - 2 * A * C ) / (A * A + B * B); c.y = (-2 * A * B * k.x + (A * A - B * B)* k.y - 2 * B * C) / (A * A + B * B); return c; } bool search(point k) { for (int i = 0; i < n; i++) { if (vis[i * 2]) continue; if (p[i * 2] == k) { vis[i * 2] = 1; return true; } } return false; } bool judge(double A, double B, double C) { for (int i = 0; i < n; i++) { if (vis[i * 2]) continue; point k = findPoint(A, B, C, p[i * 2]); if (!search(k)) return false; } return true; } bool solve() { double A, B, C; for (int i = 0; i < n; i++) { findLine(A, B, C, p[i], p[i + n]); memset(vis, 0, sizeof(vis)); vis[i] = vis[i + n] = 1; if (judge(A, B, C) ) return true; } return false; } int main () { int cas; scanf("%d", &cas); for (int i = 1; i <= cas; i++) { init(); printf("Case %d: %s\n", i, solve() ? "YES" : "NO"); } return 0; }
posted on 2013-12-12 16:26 love so much 阅读(310) 评论(0) 编辑 收藏 举报