Pandas 读取文本格式数据
title
其实书中说的我认为不够全,因为公司里面现在主要用stata和spss,暂时还没有用到sas,excel也很少用
那么读取文件的方式,因为有人已经总结了,我就偷过来算了
对应不同的文件类型有不同的模块
例如spss读取有savReaderWriter等
http://www.360doc.com/content/16/0831/14/18144428_587263881.shtml
pandas读取Microsoft Excel文件
针对表格csv的讲解
函数的选项参数大致划分为:
1.索引: 将一个或多个列当作返回的DataFrame处理, 以及是否从文件、用户获取列名 2. 类型推断和数据转换: 包括用户定义值的转换、缺失值标记列表等 3. 日期解析:包括组合功能, 比如将分散在多个列中的日期时间信息组合成结果中的单个列。 4. 迭代:支持对大文件进行逐块迭代。 5.不规整数据问题:跳过一些行、页脚、注释或其他一些不重要的东西(比如由成千上万个逗号隔开的数值数据)
下面看例子:
正确文件的内容:
那么是不是我的值被当成了columns了
该怎么做呢?
取值
分块读取,每次读取多少行
那么方法到底哪些呢?(个人建议也可看源码或官方文档)
作者:沐禹辰
出处:http://www.cnblogs.com/renfanzi/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
出处:http://www.cnblogs.com/renfanzi/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。